Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 6(27)2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32937458

RESUMO

Devices with tunable resistance are highly sought after for neuromorphic computing. Conventional resistive memories, however, suffer from nonlinear and asymmetric resistance tuning and excessive write noise, degrading artificial neural network (ANN) accelerator performance. Emerging electrochemical random-access memories (ECRAMs) display write linearity, which enables substantially faster ANN training by array programing in parallel. However, state-of-the-art ECRAMs have not yet demonstrated stable and efficient operation at temperatures required for packaged electronic devices (~90°C). Here, we show that (semi)conducting polymers combined with ion gel electrolyte films enable solid-state ECRAMs with stable and nearly temperature-independent operation up to 90°C. These ECRAMs show linear resistance tuning over a >2× dynamic range, 20-nanosecond switching, submicrosecond write-read cycling, low noise, and low-voltage (±1 volt) and low-energy (~80 femtojoules per write) operation combined with excellent endurance (>109 write-read operations at 90°C). Demonstration of these high-performance ECRAMs is a fundamental step toward their implementation in hardware ANNs.

2.
Carbohydr Polym ; 233: 115829, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-32059883

RESUMO

Cellulose in different forms is increasingly used due to sustainability aspects. Even though cellulose itself is an isolating material, it might affect ion transport in electronic applications. This effect is important to understand for instance in the design of cellulose-based supercapacitors. To test the ion conductivity through membranes made from cellulose nanofibril (CNF) materials, different electrolytes chosen with respect to the Hofmeister series were studied. The CNF samples were oxidised to three different surface charge levels via 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO), and a second batch was further cross-linked by periodate oxidation to increase wet strength and stability. The outcome showed that the CNF pre-treatment and choice of electrolyte are both crucial to the ion conductivity through the membranes. Significant specific ion effects were observed for the TEMPO-oxidised CNF. Periodate oxidated CNF showed low ion conductivity for all electrolytes tested due to an inhibited swelling caused by the crosslinking reaction.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...