Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-485832

RESUMO

The COVID-19 pandemic has had a staggering impact on social, economic, and public health systems worldwide. Vaccine development and mobilization against SARS-CoV-2 (the etiologic agent of COVID-19) has been rapid. However, novel strategies are still necessary to slow the pandemic, and this includes new approaches to vaccine development and/or delivery, which improve vaccination compliance and demonstrate efficacy against emerging variants. Here we report on the immunogenicity and efficacy of a SARS-CoV-2 vaccine comprised of stabilized, pre-fusion Spike protein trimers displayed on a ferritin nanoparticle (SpFN) adjuvanted with either conventional aluminum hydroxide or the Army Liposomal Formulation QS-21 (ALFQ) in a cynomolgus macaque COVID-19 model. Vaccination resulted in robust cell-mediated and humoral responses and a significant reduction of lung lesions following SARS-CoV-2 infection. The strength of the immune response suggests that dose sparing through reduced or single dosing in primates may be possible with this vaccine. Overall, the data support further evaluation of SpFN as a SARS-CoV-2 protein-based vaccine candidate with attention to fractional dosing and schedule optimization.

2.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-441510

RESUMO

The emergence of SARS-CoV-2 pandemic has highlighted the need for animal models that faithfully recapitulate the salient features of COVID-19 disease in humans; these models are necessary for the rapid down-selection, testing, and evaluation of medical countermeasures. Here we performed a direct comparison of two distinct routes of SARS-CoV-2 exposure, combined intratracheal/intranasal and small particle aerosol, in two nonhuman primate species: rhesus and cynomolgus macaques. While all four experimental groups displayed very few outward clinical signs, evidence of mild to moderate respiratory disease was present on radiographs and at the time of necropsy. Cynomolgus macaques exposed via the aerosol route also developed the most consistent fever responses and had the most severe respiratory disease and pathology. This study demonstrates that while all four models were suitable representations of mild COVID-like illness, aerosol exposure of cynomolgus macaques to SARS-CoV-2 produced the most severe disease, which may provide additional clinical endpoints for evaluating therapeutics and vaccines.

3.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-189803

RESUMO

COVID-19 presents herculean challenges to research and scientific communities for producing diagnostic and treatment solutions. Any return to normalcy requires rapid development of countermeasures, with animal models serving as a critical tool in testing vaccines and therapeutics. Animal disease status and potential COVID-19 exposure prior to study execution may severely bias efficacy testing. We developed a toolbox of immunological and molecular tests to monitor countermeasure impact on disease outcome and evaluate pre-challenge COVID-19 status. Assay application showed critical necessity for animal pre-screening. Specifically, real-time PCR results documented pre-exposure of an African Green Monkey prior to SARS-CoV-2 challenge with sequence confirmation as a community-acquired exposure. Longitudinal monitoring of nasopharyngeal swabs and serum showed pre-exposure impacted both viral disease course and resulting immunological response. This study demonstrates utility in a comprehensive pre-screening strategy for animal models, which captured the first documented case of community-acquired, non-human primate infection. One Sentence SummaryPre-exposure to SARS-CoV-2 affects biomarker responses in animal models, highlighting a need for robust pre-screening protocols prior to medical countermeasure studies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...