Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39048819

RESUMO

Biological membranes are partitioned into functional zones termed membrane microdomains, which contain specific lipids and proteins1-3. The composition and organization of membrane microdomains remain controversial because few techniques are available that allow the visualization of lipids in situ without disrupting their native behaviour3,4. The yeast eisosome, composed of the BAR-domain proteins Pil1 and Lsp1 (hereafter, Pil1/Lsp1), scaffolds a membrane compartment that senses and responds to mechanical stress by flattening and releasing sequestered factors5-9. Here we isolated near-native eisosomes as helical tubules made up of a lattice of Pil1/Lsp1 bound to plasma membrane lipids, and solved their structures by helical reconstruction. Our structures reveal a striking organization of membrane lipids, and, using in vitro reconstitutions and molecular dynamics simulations, we confirmed the positioning of individual PI(4,5)P2, phosphatidylserine and sterol molecules sequestered beneath the Pil1/Lsp1 coat. Three-dimensional variability analysis of the native-source eisosomes revealed a dynamic stretching of the Pil1/Lsp1 lattice that affects the sequestration of these lipids. Collectively, our results support a mechanism in which stretching of the Pil1/Lsp1 lattice liberates lipids that would otherwise be anchored by the Pil1/Lsp1 coat, and thus provide mechanistic insight into how eisosome BAR-domain proteins create a mechanosensitive membrane microdomain.

3.
Elife ; 72018 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-30095067

RESUMO

SWELL1 (LRRC8A) is the only essential subunit of the Volume Regulated Anion Channel (VRAC), which regulates cellular volume homeostasis and is activated by hypotonic solutions. SWELL1, together with four other LRRC8 family members, potentially forms a vastly heterogeneous cohort of VRAC channels with different properties; however, SWELL1 alone is also functional. Here, we report a high-resolution cryo-electron microscopy structure of full-length human homo-hexameric SWELL1. The structure reveals a trimer of dimers assembly with symmetry mismatch between the pore-forming domain and the cytosolic leucine-rich repeat (LRR) domains. Importantly, mutational analysis demonstrates that a charged residue at the narrowest constriction of the homomeric channel is an important pore determinant of heteromeric VRAC. Additionally, a mutation in the flexible N-terminal portion of SWELL1 affects pore properties, suggesting a putative link between intracellular structures and channel regulation. This structure provides a scaffold for further dissecting the heterogeneity and mechanism of activation of VRAC.


Assuntos
Proteínas de Membrana/química , Multimerização Proteica/genética , Relação Estrutura-Atividade , Canais de Ânion Dependentes de Voltagem/química , Aminoácidos/química , Aminoácidos/genética , Células HeLa , Humanos , Proteínas de Membrana/genética , Família Multigênica , Mutação , Estrutura Quaternária de Proteína , Canais de Ânion Dependentes de Voltagem/genética
4.
Nature ; 554(7693): 481-486, 2018 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-29261642

RESUMO

Piezo1 and Piezo2 are mechanically activated ion channels that mediate touch perception, proprioception and vascular development. Piezo proteins are distinct from other ion channels and their structure remains poorly defined, which impedes detailed study of their gating and ion permeation properties. Here we report a high-resolution cryo-electron microscopy structure of the mouse Piezo1 trimer. The detergent-solubilized complex adopts a three-bladed propeller shape with a curved transmembrane region containing at least 26 transmembrane helices per protomer. The flexible propeller blades can adopt distinct conformations, and consist of a series of four-transmembrane helical bundles that we term Piezo repeats. Carboxy-terminal domains line the central ion pore, and the channel is closed by constrictions in the cytosol. A kinked helical beam and anchor domain link the Piezo repeats to the pore, and are poised to control gating allosterically. The structure provides a foundation to dissect further how Piezo channels are regulated by mechanical force.


Assuntos
Microscopia Crioeletrônica , Canais Iônicos/química , Canais Iônicos/ultraestrutura , Animais , Sítios de Ligação , Ativação do Canal Iônico , Canais Iônicos/genética , Canais Iônicos/metabolismo , Lipídeos , Camundongos , Modelos Moleculares , Mutação , Maleabilidade , Domínios Proteicos , Solubilidade
5.
PLoS Genet ; 13(2): e1006623, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28241004

RESUMO

MicroRNAs (miRNAs) are thought to exert their functions by modulating the expression of hundreds of target genes and each to a small degree, but it remains unclear how small changes in hundreds of target genes are translated into the specific function of a miRNA. Here, we conducted an integrated analysis of transcriptome and translatome of primary B cells from mutant mice expressing miR-17~92 at three different levels to address this issue. We found that target genes exhibit differential sensitivity to miRNA suppression and that only a small fraction of target genes are actually suppressed by a given concentration of miRNA under physiological conditions. Transgenic expression and deletion of the same miRNA gene regulate largely distinct sets of target genes. miR-17~92 controls target gene expression mainly through translational repression and 5'UTR plays an important role in regulating target gene sensitivity to miRNA suppression. These findings provide molecular insights into a model in which miRNAs exert their specific functions through a small number of key target genes.


Assuntos
Linfócitos B/metabolismo , Regulação da Expressão Gênica , MicroRNAs/genética , Biossíntese de Proteínas/genética , Transcriptoma/genética , Regiões 5' não Traduzidas/genética , Animais , Linfócitos B/citologia , Sequência de Bases , Proteína 11 Semelhante a Bcl-2/genética , Proteína 11 Semelhante a Bcl-2/metabolismo , Células Cultivadas , Citometria de Fluxo , Perfilação da Expressão Gênica/métodos , Immunoblotting , Camundongos Knockout , Camundongos Transgênicos , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Receptor do Fator de Crescimento Transformador beta Tipo II , Receptores de Fatores de Crescimento Transformadores beta/genética , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Ribossomos/genética , Ribossomos/metabolismo
6.
Cell Rep ; 17(7): 1739-1746, 2016 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-27829145

RESUMO

The conversion of mechanical force to chemical signals is critical for many biological processes, including the senses of touch, pain, and hearing. Mechanosensitive ion channels play a key role in sensing the mechanical stimuli experienced by various cell types and are present in organisms from bacteria to mammals. Bacterial mechanosensitive channels are characterized thoroughly, but less is known about their counterparts in vertebrates. Piezos have been recently established as ion channels required for mechanotransduction in disparate cell types in vitro and in vivo. Overexpression of Piezos in heterologous cells gives rise to large mechanically activated currents; however, it is unclear whether Piezos are inherently mechanosensitive or rely on alternate cellular components to sense mechanical stimuli. Here, we show that mechanical perturbations of the lipid bilayer alone are sufficient to activate Piezo channels, illustrating their innate ability as molecular force transducers.


Assuntos
Canais Iônicos/metabolismo , Mecanotransdução Celular , Animais , Ativação do Canal Iônico , Bicamadas Lipídicas/metabolismo , Gotículas Lipídicas/metabolismo , Camundongos , Osmose , Solventes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...