Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Death Dis ; 8(10): e3128, 2017 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-29048400

RESUMO

It is long established that tumour-initiating cancer stem cells (CSCs) possess chemoresistant properties. However, little is known of the mechanisms involved, particularly with respect to the organisation of CSCs as stem-progenitor-differentiated cell hierarchies. Here we aimed to elucidate the relationship between CSC hierarchies and chemoresistance in an ovarian cancer model. Using a single cell-based approach to CSC discovery and validation, we report a novel, four-component CSC hierarchy based around the markers cluster of differentiation 10 (CD10) and aldehyde dehydrogenase (ALDH). In a change to our understanding of CSC biology, resistance to chemotherapy drug cisplatin was found to be the sole property of CD10-/ALDH- CSCs, while all four CSC types were sensitive to chemotherapy drug paclitaxel. Cisplatin treatment quickly altered the hierarchy, resulting in a three-component hierarchy dominated by the cisplatin-resistant CD10-/ALDH- CSC. This organisation was found to be hard-wired in a long-term cisplatin-adapted model, where again CD10-/ALDH- CSCs were the sole cisplatin-resistant component, and all CSC types remained paclitaxel-sensitive. Molecular analysis indicated that cisplatin resistance is associated with inherent- and adaptive-specific drug efflux and DNA-damage repair mechanisms. Clinically, low CD10 expression was consistent with a specific set of ovarian cancer patient samples. Collectively, these data advance our understanding of the relationship between CSC hierarchies and chemoresistance, which was shown to be CSC- and drug-type specific, and facilitated by specific and synergistic inherent and adaptive mechanisms. Furthermore, our data indicate that primary stage targeting of CD10-/ALDH- CSCs in specific ovarian cancer patients in future may facilitate targeting of recurrent disease, before it ever develops.


Assuntos
Aldeído Desidrogenase/genética , Antineoplásicos/farmacologia , Cisplatino/farmacologia , Resistencia a Medicamentos Antineoplásicos/genética , Células-Tronco Neoplásicas/patologia , Neprilisina/genética , Neoplasias Ovarianas/patologia , Antineoplásicos/uso terapêutico , Biomarcadores Tumorais , Linhagem Celular Tumoral , Cisplatino/uso terapêutico , Dano ao DNA , Reparo do DNA , Feminino , Humanos , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Neoplasias Ovarianas/tratamento farmacológico
2.
Methods Mol Biol ; 1249: 241-51, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25348311

RESUMO

Cervical cancer is the third most common cancer affecting women worldwide. It is characterized by chromosomal aberrations and alteration in the expression levels of many cell cycle regulatory proteins, driven primarily by transforming human papillomavirus (HPV) infection. MYBL2 is a member of the MYB proto-oncogene family that encodes DNA binding proteins. These proteins are involved in cell proliferation and control of cellular differentiation. We have previously demonstrated the utility of MYBL2 as a putative biomarker for cervical pre-cancer and cancer. In this chapter we describe the methodological approach for testing MYBL2 protein expression in tissue biopsies from cases of cervical intraepithelial neoplasia (CIN) and cervical cancer, using immunohistochemistry techniques on the automated immunostaining platform, the Ventana BenchMark LT. The protocol outlines the various steps in the procedure from cutting tissue sections, antibody optimization, antigen retrieval, immunostaining, and histological review.


Assuntos
Biomarcadores Tumorais/metabolismo , Proteínas de Ciclo Celular/metabolismo , Imuno-Histoquímica/métodos , Transativadores/metabolismo , Neoplasias do Colo do Útero/metabolismo , Linhagem Celular Tumoral , Feminino , Humanos , Inclusão em Parafina , Proto-Oncogene Mas , Fixação de Tecidos
3.
Mol Diagn Ther ; 11(5): 277-90, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17963416

RESUMO

Cervical cancer is a potentially preventable disease; however, it remains the second most common malignancy in women worldwide. The human papillomavirus (HPV) is the single most important etiological agent in cervical cancer. HPV contributes to neoplastic progression through the action of two viral oncoproteins E6 and E7, which interfere with critical cell cycle pathways, tumor protein p53, and retinoblastoma protein. However, evidence suggests that HPV infection alone is insufficient to induce malignant changes, and other host genetic variations are important in the development of cervical cancer. Advances in molecular biology and high throughput technologies have heralded a new era in biomarker discovery and identification of molecular targets related to carcinogenesis. These advancements have improved our understanding of carcinogenesis and will facilitate screening, early detection, management, and personalized targeted therapy. A number of these developments and molecular targets associated with cervical cancer will be addressed in this review.


Assuntos
Biomarcadores Tumorais/análise , Neoplasias do Colo do Útero/diagnóstico , Neoplasias do Colo do Útero/terapia , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Feminino , Genômica/métodos , Humanos , Técnicas de Diagnóstico Molecular/métodos , Proteômica/métodos , Neoplasias do Colo do Útero/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...