Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Biol Sci ; 290(2007): 20231349, 2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37752842

RESUMO

Rapid global warming is severely impacting Arctic ecosystems and is predicted to transform the abundance, distribution and genetic diversity of Arctic species, though these linkages are poorly understood. We address this gap in knowledge using palaeogenomics to examine how earlier periods of global warming influenced the genetic diversity of Atlantic walrus (Odobenus rosmarus rosmarus), a species closely associated with sea ice and shallow-water habitats. We analysed 82 ancient and historical Atlantic walrus mitochondrial genomes (mitogenomes), including now-extinct populations in Iceland and the Canadian Maritimes, to reconstruct the Atlantic walrus' response to Arctic deglaciation. Our results demonstrate that the phylogeography and genetic diversity of Atlantic walrus populations was initially shaped by the last glacial maximum (LGM), surviving in distinct glacial refugia, and subsequently expanding rapidly in multiple migration waves during the late Pleistocene and early Holocene. The timing of diversification and establishment of distinct populations corresponds closely with the chronology of the glacial retreat, pointing to a strong link between walrus phylogeography and sea ice. Our results indicate that accelerated ice loss in the modern Arctic may trigger further dispersal events, likely increasing the connectivity of northern stocks while isolating more southerly stocks putatively caught in small pockets of suitable habitat.

2.
Mol Ecol Resour ; 21(4): 1149-1166, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33463014

RESUMO

In recent years, nonhuman ancient DNA studies have begun to focus on larger sample sizes and whole genomes, offering the potential to reveal exciting and hitherto unknown answers to ongoing biological and archaeological questions. However, one major limitation to such studies is the substantial financial and time investments still required during sample screening, due to uncertainty regarding successful sample selection. This study investigates the effect of a wide range of sample properties including latitude, sample age, skeletal element, collagen preservation, and context on endogenous content and DNA damage profiles for 317 ancient and historic pinniped samples collected from across the North Atlantic and surrounding regions. Using generalised linear and mixed-effect models, we found that a range of factors affected DNA preservation within each of the species under consideration. The most important findings were that endogenous content varied significantly within species according to context, the type of skeletal element, the collagen content and collection year. There also appears to be an effect of the sample's geographic origin, with samples from the Arctic generally showing higher endogenous content and lower damage rates. Both latitude and sample age were found to have significant relationships with damage levels, but only for walrus samples. Sex, ontogenetic age and extraction material preparation were not found to have any significant relationship with DNA preservation. Overall, skeletal element and sample context were found to be the most influential factors and should therefore be considered when selecting samples for large-scale ancient genome studies.


Assuntos
Organismos Aquáticos/genética , Caniformia/genética , DNA Antigo , Animais , Arqueologia , Regiões Árticas
3.
Mol Biol Evol ; 36(12): 2656-2667, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31513267

RESUMO

There is a growing body of evidence demonstrating the impacts of human arrival in new "pristine" environments, including terrestrial habitat alterations and species extinctions. However, the effects of marine resource utilization prior to industrialized whaling, sealing, and fishing have largely remained understudied. The expansion of the Norse across the North Atlantic offers a rare opportunity to study the effects of human arrival and early exploitation of marine resources. Today, there is no local population of walruses on Iceland, however, skeletal remains, place names, and written sources suggest that walruses existed, and were hunted by the Norse during the Settlement and Commonwealth periods (870-1262 AD). This study investigates the timing, geographic distribution, and genetic identity of walruses in Iceland by combining historical information, place names, radiocarbon dating, and genomic analyses. The results support a genetically distinct, local population of walruses that went extinct shortly after Norse settlement. The high value of walrus products such as ivory on international markets likely led to intense hunting pressure, which-potentially exacerbated by a warming climate and volcanism-resulted in the extinction of walrus on Iceland. We show that commercial hunting, economic incentives, and trade networks as early as the Viking Age were of sufficient scale and intensity to result in significant, irreversible ecological impacts on the marine environment. This is to one of the earliest examples of local extinction of a marine species following human arrival, during the very beginning of commercial marine exploitation.


Assuntos
Extinção Biológica , Genoma Mitocondrial , Migração Humana/história , Morsas/genética , Animais , História Medieval , Islândia , Filogeografia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...