Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Med Chem ; 57(5): 2136-60, 2014 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-24476391

RESUMO

HTS screening identified compound 2a (piperazinone derivative) as a low micromolar HCV genotype 1 (GT-1) inhibitor. Resistance mapping studies suggested that this piperazinone chemotype targets the HCV nonstructural protein NS4B. Extensive SAR studies were performed around 2a and the amide function and the C-3/C-6 cis stereochemistry of the piperazinone core were essential for HCV activity. A 10-fold increase in GT-1 potency was observed when the chiral phenylcyclopropyl amide side chain of 2a was replaced with p-fluorophenylisoxazole-carbonyl moiety (67). Replacing the C-6 nonpolar hydrophobic moiety of 67 with a phenyl moiety (95) did not diminish the GT-1 potency. A heterocyclic thiophene moiety (103) and an isoxazole moiety (108) were incorporated as isosteric replacements for the C-6 phenyl moiety (95), resulting in significant improvement in GT-1b and 1a potency. However, the piperazonone class of compounds lacks GT-2 activity and, consequently, were not pursued further into development.


Assuntos
Antivirais/farmacologia , Hepacivirus/efeitos dos fármacos , Piperazinas/farmacologia , Proteínas não Estruturais Virais/antagonistas & inibidores , Antivirais/química , Descoberta de Drogas , Piperazinas/química , Relação Estrutura-Atividade
2.
Bioorg Med Chem Lett ; 22(8): 2938-42, 2012 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-22425564

RESUMO

The HCV non-structural protein NS5A has been established as a viable target for the development of direct acting antiviral therapy. From computational modeling studies strong intra-molecular hydrogen bonds were found to be a common structural moiety within known NS5A inhibitors that have low pico-molar replicon potency. Efforts to reproduce these γ-turn-like substructures provided a novel NS5A inhibitor based on a fluoro-olefin isostere. This fluoro-olefin containing inhibitor exhibited picomolar activity (EC(50)=79 pM) against HCV genotype 1b replicon without measurable cytotoxicity. This level of activity is comparable to the natural peptide-based inhibitors currently under clinic evaluation, and demonstrates that a peptidomimetic approach can serve as a useful strategy to produce potent and structurally unique inhibitors of HCV NS5A.


Assuntos
Alcenos/química , Flúor/química , Hepacivirus/efeitos dos fármacos , Peptidomiméticos/química , Peptidomiméticos/farmacologia , Proteínas não Estruturais Virais/antagonistas & inibidores , Alcenos/farmacologia , Flúor/farmacologia , Humanos , Ligação de Hidrogênio , Modelos Moleculares
3.
Antimicrob Agents Chemother ; 56(6): 3359-68, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22430955

RESUMO

PSI-7977, a prodrug of 2'-F-2'-C-methyluridine monophosphate, is the purified diastereoisomer of PSI-7851 and is currently being investigated in phase 3 clinical trials for the treatment of hepatitis C. In this study, we profiled the activity of PSI-7977 and its ability to select for resistance using a number of different replicon cells. Results showed that PSI-7977 was active against genotype (GT) 1a, 1b, and 2a (strain JFH-1) replicons and chimeric replicons containing GT 2a (strain J6), 2b, and 3a NS5B polymerase. Cross-resistance studies using GT 1b replicons confirmed that the S282T change conferred resistance to PSI-7977. Subsequently, we evaluated the ability of PSI-7977 to select for resistance using GT 1a, 1b, and 2a (JFH-1) replicon cells. S282T was the common mutation selected among all three genotypes, but while it conferred resistance to PSI-7977 in GT 1a and 1b, JFH-1 GT 2a S282T showed only a very modest shift in 50% effective concentration (EC(50)) for PSI-7977. Sequence analysis of the JFH-1 NS5B region indicated that additional amino acid changes were selected both prior to and after the emergence of S282T. These include T179A, M289L, I293L, M434T, and H479P. Residues 179, 289, and 293 are located within the finger and palm domains, while 434 and 479 are located on the surface of the thumb domain. Data from the JFH-1 replicon variants showed that amino acid changes within the finger and palm domains together with S282T were required to confer resistance to PSI-7977, while the mutations on the thumb domain serve to enhance the replication capacity of the S282T replicons.


Assuntos
Antivirais/farmacologia , Hepacivirus/efeitos dos fármacos , Hepacivirus/genética , Uridina Monofosfato/análogos & derivados , Linhagem Celular , Genótipo , Humanos , Replicon/efeitos dos fármacos , Replicon/genética , Sofosbuvir , Uridina Monofosfato/farmacologia , Replicação Viral/efeitos dos fármacos
4.
Antivir Chem Chemother ; 22(5): 217-38, 2012 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-22358223

RESUMO

BACKGROUND: Nucleoside reverse transcriptase inhibitors (NRTIs) are an effective class of agents that has played a vital role in the treatment of HIV infections. (-)-ß-D-(2R,4R)-dioxolane-thymine (DOT) is a thymidine analogue that is active against wild-type and NRTI-resistant HIV-1 mutants. It has been shown that the anti-HIV activity of DOT is limited due to poor monophosphorylation. METHODS: To further enhance the anti-HIV activity of DOT, an extensive structure-activity relationship analysis of phosphoramidate prodrugs of DOT monophosphate was undertaken. These prodrugs were evaluated for anti-HIV activity using Hela CD4 ß-gal reporter cells (P4-CCR5 luc cells). RESULTS: Among the synthesized prodrugs, the 4-bromophenyl benzyloxy l-alanyl phosphate derivative of DOT was the most potent, with a 50% effective concentration of 0.089 µM corresponding to a 75-fold increase in activity relative to the parent nucleoside DOT with no increased cytotoxicity. The metabolic stability of a selected number of potent DOT phosphoramidates was also evaluated in simulated gastric fluid, simulated intestinal fluid, human plasma and liver S9 fractions. CONCLUSIONS: A series of new phosphoramidate prodrugs of DOT were prepared and evaluated as inhibitors of HIV replication in vitro. Metabolic stability studies indicated that these DOT phosphoramidate derivatives have the potential to show acceptable stability in the gastrointestinal tract, but they metabolize rapidly in the liver.


Assuntos
Amidas/farmacologia , Fármacos Anti-HIV/farmacologia , Dioxolanos/farmacologia , Ácidos Fosfóricos/farmacologia , Pró-Fármacos/farmacologia , Timina/análogos & derivados , Cromatografia Líquida de Alta Pressão , Dioxolanos/química , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Espectrofotometria Ultravioleta , Timina/química , Timina/farmacologia
5.
Nucleosides Nucleotides Nucleic Acids ; 30(11): 886-96, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22060553

RESUMO

In order to support bioanalytical LC/MS method development and plasma sample analysis in preclinical and clinical studies of the anti-hepatitis C-virus nucleotides, PSI-7977 and PSI-352938, the corresponding stable isotope labeled forms were prepared. These labeled compounds were prepared by addition reaction of the freshly prepared Grignard reagent (13)CD(3)MgI to the corresponding 2 '-ketone nucleosides followed by fluorination of the resulting carbinol with DAST. As expected, these 2 '-C-(trideuterated-(13)C-methyl) nucleotide prodrugs showed similar anti-HCV activity to that of the corresponding unlabeled ones.


Assuntos
Antivirais/química , Óxidos P-Cíclicos/química , Hepacivirus/efeitos dos fármacos , Nucleosídeos/química , Pró-Fármacos/química , Uridina Monofosfato/análogos & derivados , Antivirais/síntese química , Antivirais/farmacologia , Óxidos P-Cíclicos/síntese química , Óxidos P-Cíclicos/farmacologia , Halogenação , Hepatite C/tratamento farmacológico , Humanos , Marcação por Isótopo/métodos , Nucleosídeos/síntese química , Nucleosídeos/farmacologia , Pró-Fármacos/síntese química , Pró-Fármacos/farmacologia , Sofosbuvir , Uridina Monofosfato/síntese química , Uridina Monofosfato/química , Uridina Monofosfato/farmacologia
6.
Antiviral Res ; 91(2): 120-32, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21600932

RESUMO

PSI-353661, a phosphoramidate prodrug of 2'-deoxy-2'-fluoro-2'-C-methylguanosine-5'-monophosphate, is a highly active inhibitor of genotype 1a, 1b, and 2a HCV RNA replication in the replicon assay and of genotype 1a and 2a infectious virus replication. PSI-353661 is active against replicons harboring the NS5B S282T or S96T/N142T amino acid alterations that confer decreased susceptibility to nucleoside/tide analogs as well as mutations that confer resistance to non-nucleoside inhibitors of NS5B. Replicon clearance studies show that PSI-353661 was able to clear cells of HCV replicon RNA and prevent a rebound in replicon RNA. PSI-353661 showed no toxicity toward bone marrow stem cells or mitochondrial toxicity. The metabolism to the active 5'-triphosphate involves hydrolysis of the carboxyl ester by cathepsin A (Cat A) and carboxylesterase 1 (CES1) followed by a putative nucleophilic attack on the phosphorus by the carboxyl group resulting in the elimination of phenol and the alaninyl phosphate metabolite, PSI-353131. Histidine triad nucleotide-binding protein 1 (Hint 1) then removes the amino acid moiety, which is followed by hydrolysis of the methoxyl group at the O(6)-position of the guanine base by adenosine deaminase-like protein 1 (ADAL1) to give 2'-deoxy-2'-fluoro-2'-C-methylguanosine-5'-monophosphate. The monophosphate is phosphorylated to the diphosphate by guanylate kinase. Nucleoside diphosphate kinase is the primary enzyme involved in phosphorylation of the diphosphate to the active triphosphate, PSI-352666. PSI-352666 is equally active against wild-type NS5B and NS5B containing the S282T amino acid alteration.


Assuntos
Antivirais/farmacologia , Guanosina Monofosfato/análogos & derivados , Hepacivirus/efeitos dos fármacos , Pró-Fármacos/farmacologia , Replicação Viral/efeitos dos fármacos , Biotransformação , Catepsina A/metabolismo , Cromatografia Líquida de Alta Pressão , Clonagem Molecular , Avaliação Pré-Clínica de Medicamentos , Guanosina Monofosfato/antagonistas & inibidores , Guanosina Monofosfato/farmacologia , Guanilato Quinases/metabolismo , Células Hep G2 , Hepacivirus/genética , Hepacivirus/fisiologia , Hepatócitos/efeitos dos fármacos , Humanos , Ácido Láctico/metabolismo , Luciferases/metabolismo , Testes de Sensibilidade Microbiana , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Mutação , Proteínas do Tecido Nervoso/metabolismo , Fenol/metabolismo , Fosforilação , Pró-Fármacos/química , Replicon , Proteínas não Estruturais Virais/antagonistas & inibidores
7.
Antimicrob Agents Chemother ; 55(6): 2566-75, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21444700

RESUMO

PSI-352938 is a novel cyclic phosphate prodrug of ß-D-2'-deoxy-2'-α-fluoro-2'-ß-C-methylguanosine 5'-monophosphate that has potent activity against hepatitis C virus (HCV) in vitro. The studies described here characterize the in vitro anti-HCV activity of PSI-352938, alone and in combination with other inhibitors of HCV, and the cross-resistance profile of PSI-352938. The effective concentration required to achieve 50% inhibition for PSI-352938, determined using genotype 1a-, 1b-, and 2a-derived replicons stably expressed in the Lunet cell line, were 0.20, 0.13, and 0.14 µM, respectively. The active 5'-triphosphate metabolite, PSI-352666, inhibited recombinant NS5B polymerase from genotypes 1 to 4 with comparable 50% inhibitory concentrations. In contrast, PSI-352938 did not inhibit the replication of hepatitis B virus or human immunodeficiency virus in vitro. PSI-352666 did not significantly affect the activity of human DNA and RNA polymerases. PSI-352938 and its cyclic phosphate metabolites did not affect the cyclic GMP-mediated activation of protein kinase G. Clearance studies using replicon cells demonstrated that PSI-352938 cleared cells of HCV replicon RNA and prevented replicon rebound. An additive to synergistic effect was observed when PSI-352938 was combined with other classes of HCV inhibitors, including alpha interferon, ribavirin, NS3/4A inhibitors, an NS5A inhibitor, and nucleoside/nucleotide and nonnucleoside inhibitors. Cross-resistance studies showed that PSI-352938 remained fully active against replicons containing the S282T or the S96T/N142T amino acid alteration. Replicons that contain mutations conferring resistance to various classes of nonnucleoside inhibitors also remained sensitive to inhibition by PSI-352938. PSI-352938 is currently being evaluated in a phase I clinical study in genotype 1-infected individuals.


Assuntos
Antivirais/farmacologia , Óxidos P-Cíclicos/farmacologia , Desoxiguanosina/análogos & derivados , Hepacivirus/efeitos dos fármacos , Nucleosídeos/farmacologia , Pró-Fármacos/farmacologia , RNA Viral/biossíntese , Replicon/efeitos dos fármacos , Desoxiguanosina/farmacologia , Farmacorresistência Viral , Humanos
8.
ACS Med Chem Lett ; 2(2): 130-5, 2011 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-24900291

RESUMO

Hepatitis C virus afflicts approximately 180 million people worldwide, and the development of direct acting antivirals may offer substantial benefit compared to the current standard of care. Accordingly, prodrugs of 2'-deoxy-2'-fluoro-2'-C-methylguanosine monophosphate analogues were prepared and evaluated for their anti-HCV efficacy and tolerability. These prodrugs demonstrated >1000 fold greater potency than the parent nucleoside in a cell-based replicon assay as a result of higher intracellular triphosphate levels. Further optimization led to the discovery of the clinical candidate PSI-353661, which has demonstrated strong in vitro inhibition against HCV without cytotoxicity and equipotent activity against both the wild type and the known S282T nucleoside/tide resistant replicon. PSI-353661 is currently in preclinical development for the treatment of HCV.

9.
Bioorg Med Chem Lett ; 20(24): 7376-80, 2010 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-21050754

RESUMO

A series of novel 2'-deoxy-2'-α-fluoro-2'-ß-C-methyl 3',5'-cyclic phosphate nucleotide prodrug analogs were synthesized and evaluated for their in vitro anti-HCV activity and safety. These prodrugs demonstrated a 10-100-fold greater potency than the parent nucleoside in a cell-based replicon assay due to higher cellular triphosphate levels. Our structure-activity relationship (SAR) studies provided compounds that gave high levels of active triphosphate in rat liver when administered orally to rats. These studies ultimately led to the selection of the clinical development candidate 24a (PSI-352938).


Assuntos
Antivirais/química , Óxidos P-Cíclicos/química , Inibidores Enzimáticos/química , Hepacivirus/enzimologia , Nucleosídeos/química , Nucleotídeos Cíclicos/química , Pró-Fármacos/química , Proteínas não Estruturais Virais/antagonistas & inibidores , Administração Oral , Animais , Antivirais/farmacocinética , Antivirais/toxicidade , Linhagem Celular Tumoral , Cristalografia por Raios X , Óxidos P-Cíclicos/farmacocinética , Óxidos P-Cíclicos/toxicidade , Inibidores Enzimáticos/farmacocinética , Inibidores Enzimáticos/toxicidade , Humanos , Conformação Molecular , Nucleosídeos/farmacocinética , Nucleosídeos/toxicidade , Nucleotídeos Cíclicos/síntese química , Nucleotídeos Cíclicos/toxicidade , Pró-Fármacos/farmacocinética , Pró-Fármacos/farmacologia , Ratos , Relação Estrutura-Atividade , Proteínas não Estruturais Virais/metabolismo
10.
J Med Chem ; 53(19): 7202-18, 2010 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-20845908

RESUMO

Hepatitis C virus (HCV) is a global health problem requiring novel approaches for effective treatment of this disease. The HCV NS5B polymerase has been demonstrated to be a viable target for the development of HCV therapies. ß-d-2'-Deoxy-2'-α-fluoro-2'-ß-C-methyl nucleosides are selective inhibitors of the HCV NS5B polymerase and have demonstrated potent activity in the clinic. Phosphoramidate prodrugs of the 5'-phosphate derivative of the ß-d-2'-deoxy-2'-α-fluoro-2'-ß-C-methyluridine nucleoside were prepared and showed significant potency in the HCV subgenomic replicon assay (<1 µM) and produced high levels of triphosphate 6 in primary hepatocytes and in the livers of rats, dogs, and monkeys when administered in vivo. The single diastereomer 51 of diastereomeric mixture 14 was crystallized, and an X-ray structure was determined establishing the phosphoramidate stereochemistry as Sp, thus correlating for the first time the stereochemistry of a phosphoramidate prodrug with biological activity. 51 (PSI-7977) was selected as a clinical development candidate.


Assuntos
Antivirais/síntese química , Hepacivirus/efeitos dos fármacos , Pró-Fármacos/síntese química , Uridina Monofosfato/análogos & derivados , Proteínas não Estruturais Virais/antagonistas & inibidores , Animais , Antivirais/farmacocinética , Antivirais/farmacologia , Linhagem Celular , Cristalografia por Raios X , Cães , Farmacorresistência Viral , Ésteres , Hepacivirus/genética , Hepatócitos/metabolismo , Humanos , Técnicas In Vitro , Fígado/metabolismo , Macaca fascicularis , Mutação , Pró-Fármacos/farmacocinética , Pró-Fármacos/farmacologia , Ratos , Replicon , Sofosbuvir , Estereoisomerismo , Relação Estrutura-Atividade , Uridina Monofosfato/síntese química , Uridina Monofosfato/farmacocinética , Uridina Monofosfato/farmacologia , Proteínas não Estruturais Virais/genética
11.
Antimicrob Agents Chemother ; 54(8): 3187-96, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20516278

RESUMO

The hepatitis C virus (HCV) NS5B RNA polymerase facilitates the RNA synthesis step during the HCV replication cycle. Nucleoside analogs targeting the NS5B provide an attractive approach to treating HCV infections because of their high barrier to resistance and pan-genotype activity. PSI-7851, a pronucleotide of beta-D-2'-deoxy-2'-fluoro-2'-C-methyluridine-5'-monophosphate, is a highly active nucleotide analog inhibitor of HCV for which a phase 1b multiple ascending dose study of genotype 1-infected individuals was recently completed (M. Rodriguez-Torres, E. Lawitz, S. Flach, J. M. Denning, E. Albanis, W. T. Symonds, and M. M. Berry, Abstr. 60th Annu. Meet. Am. Assoc. Study Liver Dis., abstr. LB17, 2009). The studies described here characterize the in vitro antiviral activity and cytotoxicity profile of PSI-7851. The 50% effective concentration for PSI-7851 against the genotype 1b replicon was determined to be 0.075+/-0.050 microM (mean+/-standard deviation). PSI-7851 was similarly effective against replicons derived from genotypes 1a, 1b, and 2a and the genotype 1a and 2a infectious virus systems. The active triphosphate, PSI-7409, inhibited recombinant NS5B polymerases from genotypes 1 to 4 with comparable 50% inhibitory concentrations. PSI-7851 is a specific HCV inhibitor, as it lacks antiviral activity against other closely related and unrelated viruses. PSI-7409 also lacked any significant activity against cellular DNA and RNA polymerases. No cytotoxicity, mitochondrial toxicity, or bone marrow toxicity was associated with PSI-7851 at the highest concentration tested (100 microM). Cross-resistance studies using replicon mutants conferring resistance to modified nucleoside analogs showed that PSI-7851 was less active against the S282T replicon mutant, whereas cells expressing a replicon containing the S96T/N142T mutation remained fully susceptible to PSI-7851. Clearance studies using replicon cells demonstrated that PSI-7851 was able to clear cells of HCV replicon RNA and prevent viral rebound.


Assuntos
Antivirais/farmacologia , Nucleotídeos de Desoxiuracil/farmacologia , Inibidores Enzimáticos/farmacologia , Hepacivirus/efeitos dos fármacos , Pró-Fármacos/farmacologia , Replicação Viral/efeitos dos fármacos , Amidas/química , Amidas/farmacologia , Antivirais/química , Linhagem Celular Tumoral , Nucleotídeos de Desoxiuracil/química , Inibidores Enzimáticos/química , Genótipo , Hepacivirus/classificação , Hepacivirus/enzimologia , Humanos , Ácidos Fosfóricos/química , Ácidos Fosfóricos/farmacologia , Pró-Fármacos/química , RNA Viral/genética , RNA Viral/metabolismo , RNA Polimerase Dependente de RNA/antagonistas & inibidores , Replicon/efeitos dos fármacos , Proteínas não Estruturais Virais/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...