Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Condens Matter ; 30(10): 104003, 2018 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-29376830

RESUMO

Recently, the full phase behaviour of 2D colloidal hard spheres was experimentally established, and found to involve a first order liquid to hexatic transition and a continuous hexatic to crystal transition (Thorneywork et al 2017 Phys. Rev. Lett. 118 158001). Here, we expand upon this work by considering the behaviour of the bond-orientational correlation time and Frank's constant in the region of these phase transitions. We also consider the excess entropy, as calculated from the radial distribution functions, for a wide range of area fractions covering the liquid, hexatic and crystal phases. In all cases, the behaviour of these quantities further corroborates the previously reported melting scenario of 2D colloidal hard spheres.

2.
J Phys Condens Matter ; 30(9): 094004, 2018 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-29345245

RESUMO

It has recently been revealed that long-wavelength fluctuation exists in two-dimensional (2D) glassy systems, having the same origin as that given by the Mermin-Wagner theorem for 2D crystalline solids. In this paper, we discuss how to characterise quantitatively the long-wavelength fluctuation in a molecular dynamics simulation of a lightly supercooled liquid. We employ the cage-relative mean-square displacement (MSD), defined on relative displacement to its cage, to quantitatively separate the long-wavelength fluctuation from the original MSD. For increasing system size the amplitude of acoustic long wavelength fluctuations not only increases but shifts to later times causing a crossover with structural relaxation of caging particles. We further analyse the dynamic correlation length using the cage-relative quantities. It grows as the structural relaxation becomes slower with decreasing temperature, uncovering an overestimation by the four-point correlation function due to the long-wavelength fluctuation. These findings motivate the usage of cage-relative MSD as a starting point for analysis of 2D glassy dynamics.

3.
Proc Natl Acad Sci U S A ; 114(8): 1856-1861, 2017 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-28137872

RESUMO

In a recent commentary, J. M. Kosterlitz described how D. Thouless and he got motivated to investigate melting and suprafluidity in two dimensions [Kosterlitz JM (2016) J Phys Condens Matter 28:481001]. It was due to the lack of broken translational symmetry in two dimensions-doubting the existence of 2D crystals-and the first computer simulations foretelling 2D crystals (at least in tiny systems). The lack of broken symmetries proposed by D. Mermin and H. Wagner is caused by long wavelength density fluctuations. Those fluctuations do not only have structural impact, but additionally a dynamical one: They cause the Lindemann criterion to fail in 2D in the sense that the mean squared displacement of atoms is not limited. Comparing experimental data from 3D and 2D amorphous solids with 2D crystals, we disentangle Mermin-Wagner fluctuations from glassy structural relaxations. Furthermore, we demonstrate with computer simulations the logarithmic increase of displacements with system size: Periodicity is not a requirement for Mermin-Wagner fluctuations, which conserve the homogeneity of space on long scales.

4.
Phys Rev Lett ; 117(20): 208002, 2016 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-27886484

RESUMO

Investigations of strain correlations at the glass transition reveal unexpected phenomena. The shear strain fluctuations show an Eshelby-strain pattern [∼cos(4θ)/r^{2}], characteristic of elastic response, even in liquids, at long times. We address this using a mode-coupling theory for the strain fluctuations in supercooled liquids and data from both video microscopy of a two-dimensional colloidal glass former and simulations of Brownian hard disks. We show that the long-ranged and long-lived strain signatures follow a scaling law valid close to the glass transition. For large enough viscosities, the Eshelby-strain pattern is visible even on time scales longer than the structural relaxation time τ and after the shear modulus has relaxed to zero.

5.
Proc Natl Acad Sci U S A ; 112(22): 6925-30, 2015 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-25902492

RESUMO

The Kibble-Zurek mechanism describes the evolution of topological defect structures like domain walls, strings, and monopoles when a system is driven through a second-order phase transition. The model is used on very different scales like the Higgs field in the early universe or quantum fluids in condensed matter systems. A defect structure naturally arises during cooling if separated regions are too far apart to communicate (e.g., about their orientation or phase) due to finite signal velocity. This lack of causality results in separated domains with different (degenerated) locally broken symmetry. Within this picture, we investigate the nonequilibrium dynamics in a condensed matter analog, a 2D ensemble of colloidal particles. In equilibrium, it obeys the so-called Kosterlitz-Thouless-Halperin-Nelson-Young (KTHNY) melting scenario with continuous (second order-like) phase transitions. The ensemble is exposed to a set of finite cooling rates covering roughly three orders of magnitude. Along this process, we analyze the defect and domain structure quantitatively via video microscopy and determine the scaling of the corresponding length scales as a function of the cooling rate. We indeed observe the scaling predicted by the Kibble-Zurek mechanism for the KTHNY universality class.

6.
Artigo em Inglês | MEDLINE | ID: mdl-25871107

RESUMO

We study in experiment and with computer simulation the free energy and the kinetics of vacancy and interstitial defects in two-dimensional dipolar crystals. The defects appear in different local topologies, which we characterize by their point group symmetry; Cn is the n-fold cyclic group and Dn is the dihedral group, including reflections. The frequency of different local topologies is not determined by their almost degenerate energies but is dominated by entropy for symmetric configurations. The kinetics of the defects is fully reproduced by a master equation in a multistate Markov model. In this model, the system is described by the state of the defect and the time evolution is given by transitions occurring with particular rates. These transition rate constants are extracted from experiments and simulations using an optimization procedure. The good agreement between experiment, simulation, and master equation thus provides evidence for the accuracy of the model.

7.
Artigo em Inglês | MEDLINE | ID: mdl-26764613

RESUMO

Melting in two dimensions can successfully be explained with the Kosterlitz-Thouless-Halperin-Nelson-Young (KTHNY) scenario which describes the formation of the high-symmetry phase with the thermal activation of topological defects within an (ideally) infinite monodomain. With all state variables being well defined, it should hold also as freezing scenario where oppositely charged topological defects annihilate. The Kibble-Zurek mechanism, on the other hand, shows that spontaneous symmetry breaking alongside a continuous phase transition cannot support an infinite monodomain but leads to polycrystallinity. For any nonzero cooling rate, critical fluctuations will be frozen out in the vicinity of the transition temperature. This leads to domains with different director of the broken symmetry, separated by a defect structure, e.g., grain boundaries in crystalline systems. After instantaneously quenching a colloidal monolayer from a polycrystalline to the isotropic fluid state, we show that such grain boundaries increase the probability for the formation of dislocations. In addition, we determine the temporal decay of defect core energies during the first few Brownian times after the quench. Despite the fact that the KTHNY scenario describes a continuous phase transition and phase equilibrium does not exist, melting in polycrystalline samples starts at grain boundaries similar to first-order phase transitions.

8.
Phys Rev Lett ; 113(12): 127801, 2014 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-25279643

RESUMO

We report the specific heat cN around the melting transition(s) of micrometer-sized superparamagnetic particles confined in two dimensions, calculated from fluctuations of positions and internal energy, and corresponding Monte Carlo simulations. Since colloidal systems provide single particle resolution, they offer the unique possibility to compare the experimental temperatures of the peak position of cN(T) and symmetry breaking, respectively. While order parameter correlation functions confirm the Kosterlitz-Thouless-Halperin-Nelson-Young melting scenario where translational and orientational order symmetries are broken at different temperatures with an intermediate so called hexatic phase, we observe a single peak of the specific heat within the hexatic phase, with excellent agreement between experiment and simulation. Thus, the peak is not associated with broken symmetries but can be explained with the total defect density, which correlates with the maximum increase of isolated dislocations. The absence of a latent heat strongly supports the continuous character of both transitions.

9.
Phys Rev Lett ; 111(9): 098301, 2013 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-24033073

RESUMO

We study the influence of quenched disorder on the two-dimensional melting behavior of superparamagnetic colloidal particles, using both video microscopy and computer simulations of repulsive parallel dipoles. Quenched disorder is introduced by pinning a fraction of the particles to an underlying substrate. We confirm the occurrence of the Kosterlitz-Thouless-Halperin-Nelson-Young scenario and observe an intermediate hexatic phase. While the fluid-hexatic transition remains largely unaffected by disorder, the hexatic-solid transition shifts to lower temperatures with increasing disorder. This results in a significantly broadened stability range of the hexatic phase. In addition, we observe spatiotemporal critical(like) fluctuations, which are consistent with the continuous character of the phase transitions. Characteristics of first-order transitions are not observed.

10.
Artigo em Inglês | MEDLINE | ID: mdl-24483371

RESUMO

Using experiments with single-particle resolution and computer simulations we study the collective behavior of multiple vacancies injected into two-dimensional crystals. We find that the defects assemble into linear strings, terminated by dislocations with antiparallel Burgers vectors. We show that these defect strings propagate through the crystal in a succession of rapid one-dimensional gliding and rare rotations. While the rotation rate decreases exponentially with the number of defects in the string, the diffusion constant is constant for large strings. By monitoring the separation of the dislocations at the end points, we measure their effective interactions with high precision beyond their spontaneous formation and annihilation, and we explain the double-well form of the dislocation interaction in terms of continuum elasticity theory.

11.
Artigo em Inglês | MEDLINE | ID: mdl-24483442

RESUMO

Using both video microscopy of superparamagnetic colloidal particles confined in two dimensions and corresponding computer simulations of repulsive parallel dipoles, we study the formation of fluctuating orientational clusters and topological defects in the context of the KTHNY-like melting scenario under quenched disorder. We analyze cluster densities, average cluster sizes, and the population of noncluster particles, as well as the development of defects, as a function of the system temperature and disorder strength. In addition, the probability distribution of clustering and orientational order is presented. We find that the well-known disorder-induced widening of the hexatic phase can be traced back to the distinct development characteristics of clusters and defects along the melting transitions from the solid phase to the hexatic phase to the isotropic fluid.

12.
Phys Rev Lett ; 109(17): 178301, 2012 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-23215226

RESUMO

Using positional data from video microscopy of a two-dimensional colloidal system and from simulations of hard disks, we determine the wave-vector-dependent elastic dispersion relations in glass. The emergence of rigidity based on the existence of a well defined displacement field in amorphous solids is demonstrated. Continuum elastic theory is recovered in the limit of long wavelengths which provides the glass elastic shear and bulk modulus as a function of temperature. The onset of a finite static shear modulus upon cooling marks the fluid-glass transition in an intuitive and unique way.

13.
J Phys Condens Matter ; 24(46): 464118, 2012 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-23114280

RESUMO

We use super-paramagnetic spherical particles which are arranged in a two-dimensional monolayer at a water/air interface to investigate the crystal to liquid phase transition. According to the KTHNY theory a crystal melts in thermal equilibrium by two continuous phase transitions into the isotropic liquid state with an intermediate phase, commonly known as the hexatic phase. We verify the significance of several criteria based on dynamical and structural properties to identify the crystal-hexatic and hexatic-isotropic liquid phase transitions for the same experimental data of the given setup. The criteria are the bond orientational correlation function, the Larson-Grier criterion, the 2D dynamic Lindemann parameter, the bond orientational susceptibility, the 2D Hansen-Verlet rule, the Löwen-Palberg-Simon criterion as well as a criterion based on the shape factor of Voronoi cells and Minkowski functionals. For our system with long-range repulsion, the bond order correlation function and bond order susceptibility work best to identify the hexatic-isotropic liquid transition and the 2D dynamic Lindemann parameter identifies unambiguously the hexatic-crystalline transition.

14.
Chemphyschem ; 11(5): 963-70, 2010 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-20099292

RESUMO

While the melting of crystals is in general not understood in detail on a microscopic scale, there is a microscopic theory for a class of two-dimensional crystals, which is based on the formation and unbinding of topological defects. Herein, we review experimental work on a colloidal two-dimensional model system with tunable interactions that has given the first conclusive evidence for the validity of this theory on a microscopic level. Furthermore, we show how the mechanism of melting depends on the particle interaction and that a strong anisotropy of the interaction leads to a changed melting scenario.

15.
Phys Rev Lett ; 102(23): 238301, 2009 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-19658976

RESUMO

An ultrafast quench is applied to binary mixtures of superparamagnetic colloidal particles confined at a two-dimensional water-air interface by a sudden increase of an external magnetic field. This quench realizes a virtually instantaneous cooling which is impossible in molecular systems. Using real-space experiments, the relaxation behavior after the quench is explored. Local crystallites with triangular and square symmetry are formed on different time scales, and the correlation peak amplitude of the small particles evolves nonmonotonically in time in agreement with Brownian dynamics computer simulations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...