Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 107(15): 155503, 2011 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-22107300

RESUMO

We have studied the effects of multiple-wave diffraction in a novel optical scheme recently published by Shvyd'ko et al. utilizing Bragg diffraction of x rays in backscattering geometry from asymmetrically cut crystals for achieving energy resolutions beyond the intrinsic width of the Bragg reflection. By numerical simulations based on dynamic x-ray diffraction and by experimentation involving two-dimensional angular scans of the back-reflecting crystal, multiple-wave diffraction was found to contribute up to several tens percent loss of efficiency but can be avoided without degrading the energy resolution of the original scheme by careful choice of azimuthal orientation of the diffracting crystal surface and by tilting of the crystal perpendicular to the dispersion plane.

2.
Rev Sci Instrum ; 79(10): 10E922, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19044577

RESUMO

The photoemissive cathode type of x-ray diode (XRD) is popular for measuring time and spectrally resolved output of pulsed power experiments. Vitreous carbon XRDs currently used on the Sandia National Laboratories Z-machine were designed in the early 1980s and use materials and processes no longer available. Additionally cathodes used in the high x-ray flux and dirty vacuum environment of a machine such as Z suffer from response changes requiring recalibration. In searching for a suitable replacement cathode, we discovered very high purity vitreous-carbon planchets are commercially available for use as biological substrates in scanning electron microscope (SEM) work. After simplifying the photocathode mounting to use commercially available components, we constructed a set of 20 XRDs using SEM planchets that were then calibrated at the National Synchrotron Light Source at Brookhaven National Laboratory. We present comparisons of the reproducibility and absolute calibrations between the current vitreous-carbon XRDs and our new design.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...