Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem B ; 128(23): 5601-5611, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38831581

RESUMO

While GLP-1 and its analogues are important pharmaceutical agents in the treatment of type 2 diabetes and obesity, their susceptibility to aggregate into amyloid fibrils poses a significant safety issue. Many factors may contribute to the aggregation propensity, including pH. While it is known that the monomeric structure of GLP-1 has a strong impact on primary nucleation, probing its diverse structural ensemble is challenging. Here, we investigated the monomer structural ensembles at pH 3, 4, and 7.5 using state-of-the-art computational methods in combination with experimental data. We found significant stabilization of ß-strand structures and destabilization of helical structures at lower pH, correlating with observed aggregation lag times, which are lower under these conditions. We further identified helical defects at pH 4, which led to the fastest observed aggregation, in agreement with our far-UV circular dichroism data. The detailed atomistic structures that result from the computational studies help to rationalize the experimental results on the aggregation propensity of GLP-1. This work provides a new insight into the pH-dependence of monomeric structural ensembles of GLP-1 and connects them to experimental observations.


Assuntos
Peptídeo 1 Semelhante ao Glucagon , Peptídeo 1 Semelhante ao Glucagon/química , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Concentração de Íons de Hidrogênio , Termodinâmica , Simulação de Dinâmica Molecular , Agregados Proteicos
2.
Phys Chem Chem Phys ; 26(2): 695-712, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38053511

RESUMO

To survive, many pathogens extract heme from their host organism and break down the porphyrin scaffold to sequester the Fe2+ ion via a heme oxygenase. Recent studies have revealed that certain pathogens can anaerobically degrade heme. Our own research has shown that one such pathway proceeds via NADH-dependent heme degradation, which has been identified in a family of hemoproteins from a range of bacteria. HemS, from Yersinia enterocolitica, is the main focus of this work, along with HmuS (Yersinia pestis), ChuS (Escherichia coli) and ShuS (Shigella dysenteriae). We combine experiments, Energy Landscape Theory, and a bioinformatic investigation to place these homologues within a wider phylogenetic context. A subset of these hemoproteins are known to bind certain DNA promoter regions, suggesting not only that they can catalytically degrade heme, but that they are also involved in transcriptional modulation responding to heme flux. Many of the bacterial species responsible for these hemoproteins (including those that produce HemS, ChuS and ShuS) are known to specifically target oxygen-depleted regions of the gastrointestinal tract. A deeper understanding of anaerobic heme breakdown processes exploited by these pathogens could therefore prove useful in the development of future strategies for disease prevention.


Assuntos
Hemeproteínas , Anaerobiose , Filogenia , Hemeproteínas/metabolismo , Heme/metabolismo , Escherichia coli/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...