Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(5): e27221, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38463758

RESUMO

Background: Pancreatic ductal adenocarcinoma (PDAC) is a highly intratumorally heterogeneous disease that includes several subtypes and is highly plastic. Effective gene delivery to all PDAC cells is essential for modulating gene expression and identifying potential gene-based therapeutic targets in PDAC. Most current gene delivery systems for pancreatic cells are optimized for islet or acinar cells. Lentiviral vectors are the current main gene delivery vectors for PDAC, but their transduction efficiencies vary depending on pancreatic cell type, and are especially poor for the classical subtype of PDAC cells from both primary tumors and cell lines. Methods: We systemically compare transduction efficiencies of glycoprotein G of vesicular stomatitis virus (VSV-G)-pseudotyped lentiviral and Sendai viral vectors in human normal pancreatic ductal and PDAC cells. Results: We find that the Sendai viral vector gives the most robust gene delivery efficiency regardless of PDAC cell type. Therefore, we propose using Sendai viral vectors to transduce ectopic genes into PDAC cells.

2.
J Vis Exp ; (204)2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38372300

RESUMO

The generation of induced pluripotent stem cells (iPSCs) using transcription factors has been achieved from almost any differentiated cell type and has proved highly valuable for research and clinical applications. Interestingly, iPSC reprogramming of cancer cells, such as pancreatic ductal adenocarcinoma (PDAC), has been shown to revert the invasive PDAC phenotype and override the cancer epigenome. The differentiation of PDAC-derived iPSCs can recapitulate PDAC progression from its early pancreatic intraepithelial neoplasia (PanIN) precursor, revealing the molecular and cellular changes that occur early during PDAC progression. Therefore, PDAC-derived iPSCs can be used to model the earliest stages of PDAC for the discovery of early-detection diagnostic markers. This is particularly important for PDAC patients, who are typically diagnosed at the late metastatic stages due to a lack of reliable biomarkers for the earlier PanIN stages. However, reprogramming cancer cell lines, including PDAC, into pluripotency remains challenging, labor-intensive, and highly variable between different lines. Here, we describe a more consistent protocol for generating iPSCs from various human PDAC cell lines using bicistronic lentiviral vectors. The resulting iPSC lines are stable, showing no dependence on the exogenous expression of reprogramming factors or inducible drugs. Overall, this protocol facilitates the generation of a wide range of PDAC-derived iPSCs, which is essential for discovering early biomarkers that are more specific and representative of PDAC cases.


Assuntos
Carcinoma Ductal Pancreático , Células-Tronco Pluripotentes Induzidas , Neoplasias Pancreáticas , Humanos , Neoplasias Pancreáticas/patologia , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Biomarcadores Tumorais/metabolismo , Linhagem Celular Tumoral
3.
Cell Rep Methods ; 3(11): 100625, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37918402

RESUMO

Single-cell whole-genome sequencing (scWGS) enables the assessment of genome-level molecular differences between individual cells with particular relevance to genetically diverse systems like solid tumors. The application of scWGS was limited due to a dearth of accessible platforms capable of producing high-throughput profiles. We present a technique that leverages nucleosome disruption methodologies with the widely adopted 10× Genomics ATAC-seq workflow to produce scWGS profiles for high-throughput copy-number analysis without new equipment or custom reagents. We further demonstrate the use of commercially available indexed transposase complexes from ScaleBio for sample multiplexing, reducing the per-sample preparation costs. Finally, we demonstrate that sequential indexed tagmentation with an intervening nucleosome disruption step allows for the generation of both ATAC and WGS data from the same cell, producing comparable data to the unimodal assays. By exclusively utilizing accessible commercial reagents, we anticipate that these scWGS and scWGS+ATAC methods can be broadly adopted by the research community.


Assuntos
Cromatina , Nucleossomos , Cromatina/genética , Nucleossomos/genética , Análise de Sequência de DNA/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Genoma
4.
Commun Med (Lond) ; 3(1): 146, 2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37857666

RESUMO

BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) has an overall 5-year survival rate of just 12.5% and thus is among the leading causes of cancer deaths. When detected at early stages, PDAC survival rates improve substantially. Testing high-risk patients can increase early-stage cancer detection; however, currently available liquid biopsy approaches lack high sensitivity and may not be easily accessible. METHODS: Extracellular vesicles (EVs) were isolated from blood plasma that was collected from a training set of 650 patients (105 PDAC stages I and II, 545 controls). EV proteins were analyzed using a machine learning approach to determine which were the most informative to develop a classifier for early-stage PDAC. The classifier was tested on a validation cohort of 113 patients (30 PDAC stages I and II, 83 controls). RESULTS: The training set demonstrates an AUC of 0.971 (95% CI = 0.953-0.986) with 93.3% sensitivity (95% CI: 86.9-96.7) at 91.0% specificity (95% CI: 88.3-93.1). The trained classifier is validated using an independent cohort (30 stage I and II cases, 83 controls) and achieves a sensitivity of 90.0% and a specificity of 92.8%. CONCLUSIONS: Liquid biopsy using EVs may provide unique or complementary information that improves early PDAC and other cancer detection. EV protein determinations herein demonstrate that the AC Electrokinetics (ACE) method of EV enrichment provides early-stage detection of cancer distinct from normal or pancreatitis controls.


Pancreatic cancer is one of the deadliest cancers and it is often detected when it is too late, limiting treatment options and reducing survival rates. Identifying blood-based markers of pancreatic cancer may help us to diagnose it earlier, when it is more treatable. Tiny particles circulating in the blood stream, called extracellular vesicles (EVs), contain useful information about tumors, which can be collected with our innovative technology. In this study, we analyzed markers present within EVs and developed a computational tool using this information to identify people with early-stage pancreatic cancer. With further testing in real-world settings, this approach may prove useful for surveillance and early detection of this deadly disease.

5.
NAR Cancer ; 5(2): zcad016, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37089813

RESUMO

Stromal cells promote extensive fibrosis in pancreatic ductal adenocarcinoma (PDAC), which is associated with poor prognosis and therapeutic resistance. We report here for the first time that loss of the RNA-binding protein human antigen R (HuR, ELAVL1) in PDAC cells leads to reprogramming of the tumor microenvironment. In multiple in vivo models, CRISPR deletion of ELAVL1 in PDAC cells resulted in a decrease of collagen deposition, accompanied by a decrease of stromal markers (i.e. podoplanin, α-smooth muscle actin, desmin). RNA-sequencing data showed that HuR plays a role in cell-cell communication. Accordingly, cytokine arrays identified that HuR regulates the secretion of signaling molecules involved in stromal activation and extracellular matrix organization [i.e. platelet-derived growth factor AA (PDGFAA) and pentraxin 3]. Ribonucleoprotein immunoprecipitation analysis and transcription inhibition studies validated PDGFA mRNA as a novel HuR target. These data suggest that tumor-intrinsic HuR supports extrinsic activation of the stroma to produce collagen and desmoplasia through regulating signaling molecules (e.g. PDGFAA). HuR-deficient PDAC in vivo tumors with an altered tumor microenvironment are more sensitive to the standard of care gemcitabine, as compared to HuR-proficient tumors. Taken together, we identified a novel role of tumor-intrinsic HuR in its ability to modify the surrounding tumor microenvironment and regulate PDGFAA.

6.
Cancers (Basel) ; 14(3)2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-35158877

RESUMO

The role of neoadjuvant chemoradiotherapy and/or chemotherapy (neoCHT) in patients with pancreatic ductal adenocarcinoma (PDAC) is poorly defined. We hypothesized that patients who underwent neoadjuvant therapy (NAT) would have improved systemic therapy delivery, as well as comparable perioperative complications, compared to patients undergoing upfront resection. This is an IRB-approved retrospective study of potentially resectable PDAC patients treated within an academic quaternary referral center between 2011 and 2018. Data were abstracted from the electronic medical record using an institutional cancer registry and the National Surgical Quality Improvement Program. Three hundred and fourteen patients were eligible for analysis and eighty-one patients received NAT. The median overall survival (OS) was significantly improved in patients who received NAT (28.6 vs. 20.1 months, p = 0.014). Patients receiving neoCHT had an overall increased mean duration of systemic therapy (p < 0.001), and the median OS improved with each month of chemotherapy delivered (HR = 0.81 per month CHT, 95% CI (0.76-0.86), p < 0.001). NAT was not associated with increases in early severe post-operative complications (p = 0.47), late leaks (p = 0.23), or 30-90 day readmissions (p = 0.084). Our results show improved OS in patients who received NAT, driven largely by improved chemotherapy delivery, without an apparent increase in early or late perioperative complications compared to patients undergoing upfront resection.

8.
Cancer Discov ; 11(8): 2014-2031, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33727309

RESUMO

Immunotherapies targeting aspects of T cell functionality are efficacious in many solid tumors, but pancreatic ductal adenocarcinoma (PDAC) remains refractory to these treatments. Deeper understanding of the PDAC immune ecosystem is needed to identify additional therapeutic targets and predictive biomarkers for therapeutic response and resistance monitoring. To address these needs, we quantitatively evaluated leukocyte contexture in 135 human PDACs at single-cell resolution by profiling density and spatial distribution of myeloid and lymphoid cells within histopathologically defined regions of surgical resections from treatment-naive and presurgically (neoadjuvant)-treated patients and biopsy specimens from metastatic PDAC. Resultant data establish an immune atlas of PDAC heterogeneity, identify leukocyte features correlating with clinical outcomes, and, through an in silico study, provide guidance for use of PDAC tissue microarrays to optimally measure intratumoral immune heterogeneity. Atlas data have direct applicability as a reference for evaluating immune responses to investigational neoadjuvant PDAC therapeutics where pretherapy baseline specimens are not available. SIGNIFICANCE: We provide a phenotypic and spatial immune atlas of human PDAC identifying leukocyte composition at steady state and following standard neoadjuvant therapies. These data have broad utility as a resource that can inform on leukocyte responses to emerging therapies where baseline tissues were not acquired.This article is highlighted in the In This Issue feature, p. 1861.


Assuntos
Carcinoma Ductal Pancreático/terapia , Leucócitos/patologia , Neoplasias Pancreáticas/terapia , Microambiente Tumoral , Carcinoma Ductal Pancreático/patologia , Humanos , Imunoterapia , Neoplasias Pancreáticas/patologia
9.
Biochem Biophys Res Commun ; 450(1): 324-9, 2014 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-24944020

RESUMO

It is well established that lipid metabolism is controlled, in part, by circadian clocks. However, circadian clocks lose temporal precision with age and correlates with elevated incidence in dyslipidemia and metabolic syndrome in older adults. Because our lab has shown that lipoic acid (LA) improves lipid homeostasis in aged animals, we hypothesized that LA affects the circadian clock to achieve these results. We fed 24 month old male F344 rats a diet supplemented with 0.2% (w/w) LA for 2 weeks prior to sacrifice and quantified hepatic circadian clock protein levels and clock-controlled lipid metabolic enzymes. LA treatment caused a significant phase-shift in the expression patterns of the circadian clock proteins Period (Per) 2, Brain and Muscle Arnt-Like1 (BMAL1), and Reverse Erythroblastosis virus (Rev-erb) ß without altering the amplitude of protein levels during the light phase of the day. LA also significantly altered the oscillatory patterns of clock-controlled proteins associated with lipid metabolism. The level of peroxisome proliferator-activated receptor (PPAR) α was significantly increased and acetyl-CoA carboxylase (ACC) and fatty acid synthase (FAS) were both significantly reduced, suggesting that the LA-supplemented aged animals are in a catabolic state. We conclude that LA remediates some of the dyslipidemic processes associated with advanced age, and this mechanism may be at least partially through entrainment of circadian clocks.


Assuntos
Envelhecimento/fisiologia , Proteínas CLOCK/metabolismo , Relógios Circadianos/fisiologia , Metabolismo dos Lipídeos/fisiologia , Ácido Tióctico/administração & dosagem , Administração Oral , Animais , Retroalimentação Fisiológica/efeitos dos fármacos , Retroalimentação Fisiológica/fisiologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Masculino , Ratos , Ratos Endogâmicos F344
10.
Eur J Pharmacol ; 690(1-3): 13-21, 2012 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-22683840

RESUMO

The dopamine transporter removes the neurotransmitter from the synapse, regulating dopamine availability. The transporter can be internalized and its function is blocked by cocaine and other ligands. Melittin inhibits dopamine transporter function and causes internalization of the recombinant transporter in stably transfected HEK-293 cells, but the specific pathways for internalization and disposition of the transporter are unknown. Here we report that melittin treatment increased both transporter internalization and colocalization with clathrin, effects that were blocked by pretreatment with cocaine. Density gradient centrifugation revealed that melittin treatment caused the dopamine transporter to associate with a density fraction containing the early endosome marker Rab 5A. Confocal microscopy revealed that melittin treatment also increased transporter colocalization with Rab 5A and decreased colocalization with the late endosome marker Rab 7 and the recycling endosome marker Rab 11. Following 60 min of melittin treatment, the transporter was trafficked back to the membrane. By comparison, phorbol ester treatment increased transporter colocalization with early endosome antigen 1 and Rab 7 in a time-dependent manner. Cocaine treatment alone does not affect transporter trafficking in these cells. Results indicate multiple dopamine transporter internalization and recycling pathways that depend on transporter-ligand interactions and post-translational modifications.


Assuntos
Proteínas da Membrana Plasmática de Transporte de Dopamina/genética , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Meliteno/farmacologia , Transfecção , Biotinilação/efeitos dos fármacos , Células HEK293 , Humanos , Espaço Intracelular/efeitos dos fármacos , Espaço Intracelular/metabolismo , Meliteno/metabolismo , Transporte Proteico/efeitos dos fármacos , Acetato de Tetradecanoilforbol/análogos & derivados , Acetato de Tetradecanoilforbol/farmacologia
11.
J Neurosci ; 32(21): 7119-36, 2012 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-22623657

RESUMO

NMDA receptor-dependent long-term potentiation (LTP) and depression (LTD) are forms of synaptic plasticity underlying learning and memory that are expressed through increases and decreases, respectively, in dendritic spine size and AMPA receptor (AMPAR) phosphorylation and postsynaptic localization. The A-kinase anchoring protein 79/150 (AKAP79/150) signaling scaffold regulates AMPAR phosphorylation, channel activity, and endosomal trafficking associated with LTP and LTD. AKAP79/150 is targeted to dendritic spine plasma membranes by an N-terminal polybasic domain that binds phosphoinositide lipids, F-actin, and cadherin cell adhesion molecules. However, we do not understand how regulation of AKAP targeting controls AMPAR endosomal trafficking. Here, we report that palmitoylation of the AKAP N-terminal polybasic domain targets it to postsynaptic lipid rafts and dendritic recycling endosomes. AKAP palmitoylation was regulated by seizure activity in vivo and LTP/LTD plasticity-inducing stimuli in cultured rat hippocampal neurons. With chemical LTP induction, we observed AKAP79 dendritic spine recruitment that required palmityolation and Rab11-regulated endosome recycling coincident with spine enlargement and AMPAR surface delivery. Importantly, a palmitoylation-deficient AKAP79 mutant impaired regulation of spine size, endosome recycling, AMPAR trafficking, and synaptic potentiation. These findings emphasize the emerging importance of palmitoylation in controlling synaptic function and reveal novel roles for the AKAP79/150 signaling complex in dendritic endosomes.


Assuntos
Proteínas de Ancoragem à Quinase A/fisiologia , Dendritos/metabolismo , Endossomos/metabolismo , Plasticidade Neuronal/fisiologia , Transporte Proteico/fisiologia , Proteínas de Ancoragem à Quinase A/genética , Proteínas de Ancoragem à Quinase A/metabolismo , Animais , Células COS , Células Cultivadas , Chlorocebus aethiops , Espinhas Dendríticas/ultraestrutura , Feminino , Técnicas de Silenciamento de Genes , Hipocampo/metabolismo , Hipocampo/fisiologia , Ácido Caínico/farmacologia , Lipoilação/fisiologia , Potenciação de Longa Duração/fisiologia , Depressão Sináptica de Longo Prazo/fisiologia , Masculino , Ratos , Ratos Sprague-Dawley , Ratos Wistar , Receptores de AMPA/metabolismo , Convulsões/induzido quimicamente , Convulsões/metabolismo , Convulsões/fisiopatologia
12.
Pharmacol Res ; 66(3): 199-206, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22609537

RESUMO

Lipoic acid (LA) shows promise as a beneficial micronutrient toward improving elder health. Studies using old rats show that (R)-α-LA (R-LA) significantly increases low molecular weight antioxidants that otherwise decline with age. Despite this rationale for benefiting human health, little is known about age-associated alterations in absorption characteristics of LA, or whether the commercially available racemic mixture of LA (R,S-LA) is equally as bioavailable as the naturally occurring R-enantiomer. To address these discrepancies, a pilot study was performed to establish which form of LA is most effectively absorbed in older subjects relative to young volunteers. Young adults (average age=32 years) and older adults (average age=79 years) each received 500 mg of either R- or R,S-LA. Blood samples were collected for 3h after supplementation. After a washout period they were given the other chiral form of LA not originally ingested. Results showed that 2 out of 6 elder males exhibited greater maximal plasma LA and area under the curve for the R-form of LA versus the racemic mixture. The elder subjects also demonstrated a reduced time to reach maximal plasma LA concentration following R-LA supplementation than for the racemic mixture. In contrast, young males had a tendency for increased bioavailability of R,S-LA. Overall, bioavailability for either LA isoform was much more variable between older subjects compared to young adults. Plasma glutathione levels were not altered during the sampling period. Thus subject age, and potential for varied response, should be considered when determining an LA supplementation regimen.


Assuntos
Ácido Tióctico/farmacocinética , Adulto , Fatores Etários , Idoso , Antioxidantes/metabolismo , Disponibilidade Biológica , Suplementos Nutricionais , Feminino , Glutationa/metabolismo , Humanos , Masculino , Projetos Piloto , Fatores Sexuais , Estereoisomerismo , Ácido Tióctico/sangue , Ácido Tióctico/química , Ácido Tióctico/farmacologia
13.
Eur J Pharmacol ; 650(2-3): 501-10, 2011 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-20969853

RESUMO

Phospholipase A(2) releases the fatty acid arachidonic acid from membrane phospholipids. We used the purported phospholipase A(2) stimulator, melittin, to examine the effects of endogenous arachidonic acid signaling on dopamine transporter function and trafficking. In HEK-293 cells stably transfected with the dopamine transporter, melittin reduced uptake of [((3))H]dopamine. Additionally, measurements of fatty acid content demonstrated a melittin-induced release of membrane-incorporated arachidonic acid, but inhibitors of phospholipase C, phospholipase D, and phospholipase A(2) did not prevent the release. Subsequent experiments measuring [(125)I]RTI-55 binding to the dopamine transporter demonstrated a direct interaction of melittin, or a melittin-activated endogenous compound, with the transporter to inhibit antagonist binding. This effect was not specific to the dopamine transporter, as [(3)H]spiperone binding to the recombinant dopamine D(2) receptor was also inhibited by melittin treatment. Finally, melittin stimulated an increase in internalization of the dopamine transporter, and this effect was blocked by pretreatment with cocaine. Thus, melittin acts through multiple mechanisms to regulate cellular activity, including release of membrane-incorporated fatty acids and interaction with the dopamine transporter.


Assuntos
Ácido Araquidônico/metabolismo , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Ativadores de Enzimas/farmacologia , Meliteno/farmacologia , Proteínas de Membrana/metabolismo , Fosfolipases/metabolismo , Transporte Biológico , Cocaína/farmacologia , Dopamina/metabolismo , Proteínas da Membrana Plasmática de Transporte de Dopamina/genética , Interações Medicamentosas , Células HEK293 , Humanos , Inibidores de Fosfolipase A2 , Fosfolipase D/metabolismo , Fosfolipases A2/metabolismo , Transporte Proteico , Fosfolipases Tipo C/metabolismo
14.
Front Mol Neurosci ; 1: 4, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18946537

RESUMO

Excitability of individual neurons dictates the overall excitation in specific brain circuits. This process is thought to be regulated by molecules that regulate synapse number, morphology and strength. Neuronal excitation is also influenced by the amounts of neurotransmitter receptors and signaling molecules retained at particular synaptic sites. Recent studies revealed a key role for PSD-95, a scaffolding molecule enriched at glutamatergic synapses, in modulation of clustering of several neurotransmitter receptors, adhesion molecules, ion channels, cytoskeletal elements and signaling molecules at postsynaptic sites. In this review we will highlight mechanisms that control targeting of PSD-95 at the synapse, and discuss how this molecule influences the retention and clustering of diverse synaptic proteins to regulate synaptic structure and strength. We will also discuss how PSD-95 may maintain a balance between excitation and inhibition in the brain and how alterations in this balance may contribute to neuropsychiatric disorders.

15.
Neurosci Lett ; 348(3): 180-4, 2003 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-12932823

RESUMO

Block of calcium-sensitive potassium SK current (gKCa([SK])) by apamin or bicuculline methiodide potentiates burst firing in dopamine neurons in the presence of N-methyl-D-aspartate (NMDA). The purpose of this study was to test the hypothesis that calcium entry through NMDA-gated channels can potentiate gKCa([SK]) in dopamine neurons in the ventral tegmental area. We used microelectrodes to record an outward tail current that was evoked by membrane depolarization under single-electrode voltage-clamp. Using bicuculline methiodide (50 microM) as a reversible inhibitor of gKCa([SK]), we found that NMDA (15 microM) reduced the peak amplitude of the outward tail current by 39%. Contrary to expectations, our results suggest that stimulation of NMDA receptors reduces the calcium-activated potassium gKCa([SK]), an effect that could facilitate NMDA-dependent burst firing.


Assuntos
Dopamina/fisiologia , Neurônios/fisiologia , Canais de Potássio Cálcio-Ativados/fisiologia , Canais de Potássio/fisiologia , Área Tegmentar Ventral/fisiologia , Animais , Técnicas In Vitro , Potenciais da Membrana/fisiologia , Ratos , Ratos Sprague-Dawley , Canais de Potássio Ativados por Cálcio de Condutância Baixa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...