Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-479546

RESUMO

The long-term evolution of viruses is ultimately due to viral mutants that arise within infected individuals and transmit to other individuals. Here we use deep sequencing to investigate the transmission of viral genetic variation among individuals during a SARS-CoV-2 outbreak that infected the vast majority of crew members on a fishing boat. We deep-sequenced nasal swabs to characterize the within-host viral population of infected crew members, using experimental duplicates and strict computational filters to ensure accurate variant calling. We find that within-host viral diversity is low in infected crew members. The mutations that did fix in some crew members during the outbreak are not observed at detectable frequencies in any of the sampled crew members in which they are not fixed, suggesting viral evolution involves occasional fixation of low-frequency mutations during transmission rather than persistent maintenance of within-host viral diversity. Overall, our results show that strong transmission bottlenecks dominate viral evolution even during a superspreading event with a very high attack rate.

2.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21265255

RESUMO

Amplicon-based sequencing methods have been central in characterizing the diversity, transmission and evolution of SARS-CoV-2, but need to be rigorously assessed for clinical utility. Here, we validated the Swift Biosciences SARS-CoV-2 Swift Normalase Amplicon Panels using remnant clinical specimens. High quality genomes meeting our established library and sequence quality criteria were recovered from positive specimens with a 95% limit of detection of [≥] 40.08 SARS-CoV-2 copies/PCR reaction. Breadth of genome recovery was evaluated across a range of Ct values (11.3 - 36.7, median 21.6). Out of 428 positive samples, 406 (94.9%) generated genomes with < 10% Ns, with a mean genome coverage of 13,545X {+/-} SD 8,382X. No genomes were recovered from PCR-negative specimens (n = 30), or from specimens positive for non-SARS-CoV-2 respiratory viruses (n = 20). Compared to whole-genome shotgun metagenomic sequencing (n = 14) or Sanger sequencing for the spike gene (n = 11), pairwise identity between consensus sequences was 100% in all cases, with highly concordant allele frequencies (R2 = 0.99) between Swift and shotgun libraries. When samples from different clades were mixed at varying ratios, expected variants were detected even in 1:99 mixtures. When deployed as a clinical test, 268 tests were performed in the first 23 weeks with a median turnaround time of 11 days, ordered primarily for outbreak investigations and infection control.

3.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21263229

RESUMO

BackgroundNovel SARS-CoV-2 Variants of Concern (VoC) pose a challenge to controlling the COVID-19 pandemic. Previous studies indicate that clinical samples collected from individuals infected with the Delta variant may contain higher levels of RNA than previous variants, but the relationship between viral RNA and infectious virus for individual variants is unknown. MethodsWe measured infectious viral titer (using a micro-focus forming assay) as well as total and subgenomic viral RNA levels (using RT-PCR) in a set of 165 clinical samples containing SARS-CoV-2 Alpha, Delta and Epsilon variants that were processed within two days of collection from the patient. ResultsWe observed a high degree of variation in the relationship between viral titers and RNA levels. Despite the variability we observed for individual samples the overall infectivity differed among the three variants. Both Delta and Epsilon had significantly higher infectivity than Alpha, as measured by the number of infectious units per quantity of viral E gene RNA (6 and 4 times as much, p=0.0002 and 0.009 respectively) or subgenomic E RNA (11 and 7 times as much, p<0.0001 and 0.006 respectively). ConclusionIn addition to higher viral RNA levels reported for the Delta variant, the infectivity (amount of replication competent virus per viral genome copy) may also be increased compared to Alpha. Measuring the relationship between live virus and viral RNA is an important step in assessing the infectivity of novel SARS-CoV-2 variants. An increase in the infectivity of the Delta variant may further explain increased spread and suggests a need for increased measures to prevent viral transmission. SIGNIFICANCE STATEMENTCurrent and future SARS-CoV-2 variants threaten our ability to control the COVID-19 pandemic. Variants with increased transmission, higher viral loads, or greater immune evasion are of particular concern. Viral loads are currently measured by the amount of viral RNA in a clinical sample rather than the amount of infectious virus. We measured both RNA and infectious virus levels directly in a set of 165 clinical specimens from Alpha, Epsilon or Delta variants. Our data shows that Delta is more infectious compared to Alpha, with [~] six times as much infectious virus for the same amount of RNA. This increase in infectivity suggests increased measures (vaccination, masking, distancing, ventilation) are needed to control Delta compared to Alpha.

4.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21260544

RESUMO

With the COVID-19 pandemic caused by SARS-CoV-2 now in its second year, there remains an urgent need for diagnostic testing that can identify infected individuals, particularly those who harbor infectious virus. Various RT-PCR strategies have been proposed to identify specific viral RNA species that may predict the presence of infectious virus, including detection of transcriptional intermediates (e.g. subgenomic RNA [sgRNA]) and replicative intermediates (e.g. negative-strand RNA species). Using a novel primer/probe set for detection of subgenomic (sg)E transcripts, we successfully identified 100% of specimens containing culturable SARS-CoV-2 from a set of 126 clinical samples (total sgE CT values ranging from 12.3-37.5). This assay showed superior performance compared to a previously published sgRNA assay and to a negative-strand RNA assay, both of which failed to detect target RNA in a subset of samples from which we isolated live virus. In addition, total levels of viral RNA (genome, negative-strand, and sgE) detected with the WHO/Charite primer-probe set correlated closely with levels of infectious virus. Specifically, infectious virus was not detected in samples with a CT above 31.0. Clinical samples with higher levels of viral RNA also displayed cytopathic effect (CPE) more quickly than those with lower levels of viral RNA. Finally, we found that the infectivity of SARS-CoV-2 samples is significantly dependent on the cell type used for viral isolation, as Vero E6 cells expressing TMRPSS2 extended the analytical sensitivity of isolation by more than 3 CT compared to parental Vero E6 cells and resulted in faster isolation. Our work shows that using a total viral RNA Ct cut-off of >31 or specifically testing for sgRNA can serve as an effective rule-out test for viral infectivity.

5.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-448495

RESUMO

The emergence and establishment of SARS-CoV-2 variants of interest (VOI) and variants of concern (VOC) highlight the importance of genomic surveillance. We propose a statistical learning strategy (SLS) for identifying and spatiotemporally tracking potentially relevant Spike protein mutations. We analyzed 167,893 Spike protein sequences from US COVID-19 cases (excluding 21,391 sequences from VOI/VOC strains) deposited at GISAID from January 19, 2020 to March 15, 2021. Alignment against the reference Spike protein sequence led to the identification of viral residue variants (VRVs), i.e., residues harboring a substitution compared to the reference strain. Next, generalized additive models were applied to model VRV temporal dynamics, to identify VRVs with significant and substantial dynamics (false discovery rate q-value <0.01; maximum VRV proportion > 10% on at least one day). Unsupervised learning was then applied to hierarchically organize VRVs by spatiotemporal patterns and identify VRV-haplotypes. Finally, homology modelling was performed to gain insight into potential impact of VRVs on Spike protein structure. We identified 90 VRVs, 71 of which have not previously been observed in a VOI/VOC, and 35 of which have emerged recently and are durably present. Our analysis identifies 17 VRVs [~]91 days earlier than their first corresponding VOI/VOC publication. Unsupervised learning revealed eight VRV-haplotypes of 4 VRVs or more, suggesting two emerging strains (B1.1.222 and B.1.234). Structural modeling supported potential functional impact of the D1118H and L452R mutations. The SLS approach equally monitors all Spike residues over time, independently of existing phylogenic classifications, and is complementary to existing genomic surveillance methods.

6.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21257679

RESUMO

Across 20 vaccine breakthrough cases detected at our institution, all 20 (100%) infections were due to variants of concern (VOC) and had a median Ct of 20.2 (IQR=17.1-23.3). When compared to 5174 contemporaneous samples sequenced in our laboratory, VOC were significantly enriched among breakthrough infections (p < .05).

7.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21256118

RESUMO

With the availability of widespread SARS-CoV-2 vaccination, high-throughput quantitative anti-spike serological testing will likely become increasingly important. Here, we investigated the performance characteristics of the recently FDA authorized semi-quantitative anti-spike AdviseDx SARS-CoV-2 IgG II assay compared to the FDA authorized anti-nucleocapsid Abbott Architect SARS-CoV-2 IgG, Roche elecsys Anti-SARS-CoV-2-S, EuroImmun Anti-SARS-CoV-2 ELISA, and GenScript surrogate virus neutralization assays and examined the humoral response associated with vaccination, natural protection, and breakthrough infection. The AdviseDx assay had a clinical sensitivity at 14 days post-symptom onset or 10 days post PCR detection of 95.6% (65/68, 95% CI: 87.8-98.8%) with two discrepant individuals seroconverting shortly thereafter. The AdviseDx assay demonstrated 100% positive percent agreement with the four other assays examined using the same symptom onset or PCR detection cutoffs. Using a recently available WHO International Standard for anti-SARS-CoV-2 antibody, we provide assay unit conversion factors to international units for each of the assays examined. We performed a longitudinal survey of healthy vaccinated individuals, finding median AdviseDx immunoglobulin levels peaked seven weeks post-first vaccine dose at approximately 4,000 IU/mL. Intriguingly, among the five assays examined, there was no significant difference in antigen binding level or neutralizing activity between two seropositive patients protected against SARS-CoV-2 infection in a previously described fishing vessel outbreak and five healthcare workers who experienced vaccine breakthrough of SARS-CoV-2 infection - all with variants of concern. These findings suggest that protection against SARS-CoV-2 infection cannot currently be predicted exclusively using in vitro antibody assays against wildtype SARS-CoV-2 spike. Further work is required to establish protective correlates of protection for SARS-CoV-2 infection.

8.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21254091

RESUMO

Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) is used worldwide to test and trace the spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). "Extraction-less" or "direct" real time-reverse transcription polymerase chain reaction (RT-PCR) is an open-access qualitative method for SARS-CoV-2 detection from nasopharyngeal or oral pharyngeal samples with the potential to generate actionable data more quickly, at a lower cost, and with fewer experimental resources than full RT-qPCR. This study engaged 10 global testing sites, including laboratories currently experiencing testing limitations due to reagent or equipment shortages, in an international interlaboratory ring trial. Participating laboratories were provided a common protocol, common reagents, aliquots of identical pooled clinical samples, and purified nucleic acids and used their existing in-house equipment. We observed 100% concordance across laboratories in the correct identification of all positive and negative samples, with highly similar cycle threshold values. The test also performed well when applied to locally collected patient nasopharyngeal samples, provided the viral transport media did not contain charcoal or guanidine, both of which appeared to potently inhibit the RT-PCR reaction. Our results suggest that open-access, direct RT-PCR assays are a feasible option for more efficient COVID-19 coronavirus disease testing as demanded by the continuing pandemic.

9.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21254924

RESUMO

BackgroundThe first confirmed case of SARS-CoV-2 in North America was identified in Washington state on January 21, 2020. We aimed to quantify the number and temporal trends of out-of-state introductions of SARS-CoV-2 into Washington. MethodsWe conducted a phylogenetic analysis of 11,422 publicly available whole genome SARS-CoV-2 sequences from GISAID sampled between December 2019 and September 2020. We used maximum parsimony ancestral state reconstruction methods on time-calibrated phylogenies to enumerate introductions/exports, their likely geographic source (e.g. US, non-US, and between eastern and western Washington), and estimated date of introduction. To incorporate phylogenetic uncertainty into our estimates, we conducted 5,000 replicate analyses by generating 25 random time-stratified samples of non-Washington reference sequences, 20 random polytomy resolutions, and 10 random resolutions of the reconstructed ancestral state. ResultsWe estimated a minimum 287 separate introductions (median, range 244-320) into Washington and 204 exported lineages (range 188-227) of SARS-CoV-2 out of Washington. Introductions began in mid-January and peaked on March 29, 2020. Lineages with the Spike D614G variant accounted for the majority (88%) of introductions. Overall, 61% (range 55-65%) of introductions into Washington likely originated from a source elsewhere within the US, while the remaining 39% (range 35-45%) likely originated from outside of the US. Intra-state transmission accounted for 65% and 28% of introductions into eastern and western Washington, respectively. ConclusionsThere is phylogenetic evidence that the SARS-CoV-2 epidemic in Washington is continually seeded by a large number of introductions, and that there was significant inter- and intra-state transmission. Due to incomplete sampling our data underestimate the true number of introductions.

10.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20245431

RESUMO

Determinants of protective immunity against SARS-CoV-2 infection require the development of well-standardized, reproducible antibody assays to be utilized in concert with clinical trials to establish correlates of risk and protection. This need has led to the appearance of a variety of neutralization assays used by different laboratories and companies. Using plasma samples from COVID-19 convalescent individuals with mild-to-moderate disease from a localized outbreak in a single region of the western US, we compared three platforms for SARS-CoV-2 neutralization: assay with live SARS-CoV-2, pseudovirus assay utilizing lentiviral (LV) and vesicular stomatitis virus (VSV) packaging, and a surrogate ELISA test. Vero, Vero E6, HEK293T cells expressing human angiotensin converting enzyme 2 (hACE2), and TZM-bl cells expressing hACE2 and transmembrane serine protease 2 (TMPRSS2) were evaluated. Live-virus and LV-pseudovirus assay with HEK293T cells showed similar geometric mean titers (GMTs) ranging 141-178, but VSV-pseudovirus assay yielded significantly higher GMT (310 95%CI 211-454; p < 0.001). Fifty percent neutralizing dilution (ND50) titers from live-virus and all pseudovirus assay readouts were highly correlated (Pearson r = 0.81-0.89). ND50 titers positively correlated with plasma concentration of IgG against SARS-CoV-2 spike and receptor binding domain (RBD) (r = 0.63-0.89), but moderately correlated with nucleoprotein IgG (r = 0.46-0.73). There was a moderate positive correlation between age and spike (Spearmans rho=0.37, p=0.02), RBD (rho=0.39, p=0.013) and nucleoprotein IgG (rho=0.45, p=0.003). ND80 showed stronger correlation with age than ND50 (ND80 rho=0.51 (p=0.001), ND50 rho=0.28 (p=0.075)). Our data demonstrate high concordance between cell-based assays with live and pseudotyped virions.

11.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20207472

RESUMO

BackgroundSARS-CoV-2-specific antibodies may protect from reinfection and disease, providing the rationale for administration of plasma containing SARS-CoV-2 neutralizing antibodies (nAb) as a treatment for COVID-19. The clinical factors and laboratory assays to streamline plasma donor selection, and the durability of nAb responses, are incompletely understood. MethodsAdults with virologically-documented SARS-CoV-2 infection in a convalescent plasma donor screening program were tested for serum IgG to SARS-CoV-2 spike protein S1 domain, nucleoprotein (NP), and for nAb. ResultsAmongst 250 consecutive persons studied a median of 67 days since symptom onset, 243/250 (97%) were seropositive on one or more assays. Sixty percent of donors had nAb titers [≥]1:80. Correlates of higher nAb titer included older age (adjusted OR [AOR] 1.03/year of age, 95% CI 1.00-1.06), male sex (AOR 2.08, 95% CI 1.13-3.82), fever during acute illness (AOR 2.73, 95% CI 1.25-5.97), and disease severity represented by hospitalization (AOR 6.59, 95% CI 1.32-32.96). Receiver operating characteristic (ROC) analyses of anti-S1 and anti-NP antibody results yielded cutoffs that corresponded well with nAb titers, with the anti-S1 assay being slightly more predictive. NAb titers declined in 37 of 41 paired specimens collected a median of 98 days (range, 77-120) apart (P<0.001). Seven individuals (2.8%) were persistently seronegative and lacked T cell responses. ConclusionsNab titers correlated with COVID-19 severity, age, and sex. Standard commercially available SARS-CoV-2 IgG results can serve as useful surrogates for nAb testing. Functional nAb levels were found to decline and a small proportion of COVID-19 survivors lack adaptive immune responses.

12.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20204230

RESUMO

The rapid spread of SARS-CoV-2 has gravely impacted societies around the world. Outbreaks in different parts of the globe are shaped by repeated introductions of new lineages and subsequent local transmission of those lineages. Here, we sequenced 3940 SARS-CoV-2 viral genomes from Washington State to characterize how the spread of SARS-CoV-2 in Washington State (USA) was shaped by differences in timing of mitigation strategies across counties, as well as by repeated introductions of viral lineages into the state. Additionally, we show that the increase in frequency of a potentially more transmissible viral variant (614G) over time can potentially be explained by regional mobility differences and multiple introductions of 614G, but not the other variant (614D) into the state. At an individual level, we see evidence of higher viral loads in patients infected with the 614G variant. However, using clinical records data, we do not find any evidence that the 614G variant impacts clinical severity or patient outcomes. Overall, this suggests that at least to date, the behavior of individuals has been more important in shaping the course of the pandemic than changes in the virus. One Sentence SummaryLocal outbreak dynamics of SARS-CoV-2 in Washington State (USA) were driven by regionally different mitigation measures and repeated introductions of unique viral variants with different viral loads.

13.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20201228

RESUMO

BackgroundThe COVID-19 epidemic of 2019-20 is due to the novel coronavirus SARS-CoV-2. Following first case description in December, 2019 this virus has infected over 10 million individuals and resulted in at least 500,000 deaths world-wide. The virus is undergoing rapid mutation, with two major clades of sequence variants emerging. This study sought to determine whether SARS-CoV-2 sequence variants are associated with differing outcomes among COVID-19 patients in a single medical system. MethodsWhole genome SARS-CoV-2 RNA sequence was obtained from isolates collected from patients registered in the University of Washington Medicine health system between March 1 and April 15, 2020. Demographic and baseline medical data along with outcomes of hospitalization and death were collected. Statistical and machine learning models were applied to determine if viral genetic variants were associated with specific outcomes of hospitalization or death. FindingsFull length SARS-CoV-2 sequence was obtained 190 subjects with clinical outcome data. 35 (18.4%) were hospitalized and 14 (7.4%) died from complications of infection. A total of 289 single nucleotide variants were identified. Clustering methods demonstrated two major viral clades, which could be readily distinguished by 12 polymorphisms in 5 genes. A trend toward higher rates of hospitalization of patients with Clade 2 was observed (p=0.06). Machine learning models utilizing patient demographics and co-morbidities achieved area-under-the-curve (AUC) values of 0.93 for predicting hospitalization. Addition of viral clade or sequence information did not significantly improve models for outcome prediction. ConclusionSARS-CoV-2 shows substantial sequence diversity in a community-based sample. Two dominant clades of virus are in circulation. Among patients sufficiently ill to warrant testing for virus, no significant difference in outcomes of hospitalization or death could be discerned between clades in this sample. Major risk factors for hospitalization and death for either major clade of virus include patient age and comorbid conditions. FundingSupported by NIH P30EY001730, the Mark J. Daily, MD Research Fund (RVG), the Alida and Christopher Latham Research Fund (RVG, AYL, CSL), NIH K23EY029246 (AYL), US Food and Drug Administration (QYL)

14.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20173161

RESUMO

The development of vaccines against SARS-CoV-2 would be greatly facilitated by the identification of immunological correlates of protection in humans. However, to date, studies on protective immunity have only been performed in animal models and correlates of protection have not been established in humans. Here, we describe an outbreak of SARS-CoV-2 on a fishing vessel associated with a high attack rate. Predeparture serological and viral RT-PCR testing along with repeat testing after return to shore was available for 120 of the 122 persons on board over a median follow-up of 32.5 days (range 18.8 to 50.5 days). A total of 104 individuals had an RT-PCR positive viral test with Ct <35 or seroconverted during the follow-up period, yielding an attack rate on board of 85.2% (104/122 individuals). Metagenomic sequencing of 39 viral genomes suggested the outbreak originated largely from a single viral clade. Only three crewmembers tested seropositive prior to the boats departure in initial serological screening and also had neutralizing and spike-reactive antibodies in follow-up assays. None of these crewmembers with neutralizing antibody titers showed evidence of bona fide viral infection or experienced any symptoms during the viral outbreak. Therefore, the presence of neutralizing antibodies from prior infection was significantly associated with protection against re-infection (Fishers exact test, p=0.002).

15.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-234559

RESUMO

RNA viruses that replicate in the cytoplasm often disrupt nucleocytoplasmic transport to preferentially translate their own transcripts and prevent host antiviral responses. The Sarbecovirus accessory protein ORF6 has previously been shown to be the major inhibitor of interferon production in both SARS-CoV and SARS-CoV-2. SARS-CoV-2 ORF6 was recently shown to co-purify with the host mRNA export factors Rae1 and Nup98. Here, we demonstrate SARS-CoV-2 ORF6 strongly represses protein expression of co-transfected reporter constructs and imprisons host mRNA in the nucleus, which is associated with its ability to co-purify with Rae1 and Nup98. These protein-protein interactions map to the C-terminus of ORF6 and can be abolished by a single amino acid mutation in Met58. Overexpression of Rae1 restores reporter expression in the presence of SARS-CoV-2 ORF6. We further identify an ORF6 mutant containing a 9-amino acid deletion, ORF6 {Delta}22-30, in multiple SARS-CoV-2 clinical isolates that can still downregulate the expression of a co-transfected reporter and interact with Rae1 and Nup98. SARS-CoV ORF6 also interacts with Rae1 and Nup98. However, SARS-CoV-2 ORF6 more strongly co-purifies with Rae1 and Nup98 and results in significantly reduced expression of reporter proteins compared to SARS-CoV ORF6, a potential mechanism for the delayed symptom onset and pre-symptomatic transmission uniquely associated with the SARS-CoV-2 pandemic. ImportanceSARS-CoV-2, the causative agent of COVID-19, is an RNA virus with a large genome that encodes accessory proteins. While these accessory proteins are not required for growth in vitro, they can contribute to the pathogenicity of the virus. One of SARS-CoV-2s accessory proteins, ORF6, was recently shown to co-purify with two host proteins, Rae1 and Nup98, involved in mRNA nuclear export. We demonstrate SARS-CoV-2 ORF6 interaction with these proteins is associated with reduced expression of a reporter protein and accumulation of poly-A mRNA within the nucleus. SARS-CoV ORF6 also shows the same interactions with Rae1 and Nup98. However, SARS-CoV-2 ORF6 more strongly represses reporter expression and co-purifies with Rae1 and Nup98 compared to SARS-CoV ORF6. The ability of SARS-CoV-2 ORF6 to more strongly disrupt nucleocytoplasmic transport than SARS-CoV ORF6 may partially explain critical differences in clinical presentation between the two viruses.

16.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20157198

RESUMO

Community-level seroprevalence surveys are needed to determine the proportion of the population with previous SARS-CoV-2 infection, a necessary component of COVID-19 disease surveillance. In May, 2020, we conducted a cross-sectional seroprevalence study of IgG antibodies for nucleocapsid of SARS-CoV-2 among the residents of Blaine County, Idaho, a ski resort community with high COVID-19 attack rates in late March and Early April (2.9% for ages 18 and older). Participants were selected from volunteers who registered via a secure web link, using prestratification weighting to the population distribution by age and gender within each ZIP Code. Participants completed a survey reporting their demographics and symptoms; 88% of volunteers who were invited to participate completed data collection survey and had 10 ml of blood drawn. Serology was completed via the Abbott Architect SARS-CoV-2 IgG immunoassay. Primary analyses estimated seroprevalence and 95% credible intervals (CI) using a hierarchical Bayesian framework to account for diagnostic uncertainty. Stratified models were run by age, sex, ZIP Code, ethnicity, employment status, and a priori participant-reported COVID-19 status. Sensitivity analyses to estimate seroprevalence included base models with post-stratification for ethnicity, age, and sex, with or without adjustment for multi-participant households. IgG antibodies to the virus that causes COVID-19 were found among 22.7% (95% CI: 20.1%, 25.5%) of residents of Blaine County. Higher levels of antibodies were found among residents of the City of Ketchum 34.8% (95% CI 29.3%, 40.5%), compared to Hailey 16.8% (95%CI 13.7%, 20.3%) and Sun Valley 19.4% (95% 11.8%, 28.4%). People who self-identified as not believing they had COVID-19 had the lowest prevalence 4.8% (95% CI 2.3%, 8.2%). The range of seroprevalence after correction for potential selection bias was 21.9% to 24.2%. This study suggests more than 80% of SARS-CoV-2 infections were not reported. Although Blaine County had high levels of SARS-CoV-2 infection, the community is not yet near the herd immunity threshold.

17.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-165225

RESUMO

Despite limited genomic diversity, SARS-CoV-2 has shown a wide range of clinical manifestations in different patient populations. The mechanisms behind these host differences are still unclear. Here, we examined host response gene expression across infection status, viral load, age, and sex among shotgun RNA-sequencing profiles of nasopharyngeal swabs from 430 individuals with PCR-confirmed SARS-CoV-2 and 54 negative controls. SARS-CoV-2 induced a strong antiviral response with upregulation of antiviral factors such as OAS1-3 and IFIT1-3, and Th1 chemokines CXCL9/10/11, as well as a reduction in transcription of ribosomal proteins. SARS-CoV-2 culture in human airway epithelial cultures replicated the in vivo antiviral host response. Patient-matched longitudinal specimens (mean elapsed time = 6.3 days) demonstrated reduction in interferon-induced transcription, recovery of transcription of ribosomal proteins, and initiation of wound healing and humoral immune responses. Expression of interferon-responsive genes, including ACE2, increased as a function of viral load, while transcripts for B cell-specific proteins and neutrophil chemokines were elevated in patients with lower viral load. Older individuals had reduced expression of Th1 chemokines CXCL9/10/11 and their cognate receptor, CXCR3, as well as CD8A and granzyme B, suggesting deficiencies in trafficking and/or function of cytotoxic T cells and natural killer (NK) cells. Relative to females, males had reduced B and NK cell-specific transcripts and an increase in inhibitors of NF-{kappa}B signaling, possibly inappropriately throttling antiviral responses. Collectively, our data demonstrate that host responses to SARS-CoV-2 are dependent on viral load and infection time course, with observed differences due to age and sex that may contribute to disease severity.

18.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20078592

RESUMO

Background: Depression is a common cause of mortality and morbidity worldwide. To detect depression, we compared Beck Depression Inventory scoring as a valid tool with participants self-reporting depression.Methodology: This cross-sectional study aimed to explore the diagnostic values of self-reporting in patients' with depression comparing to Beck Depression Inventory scoring in Mazandaran Persian cohort study, with a total of 1300 samples. The sample size was determined to include 155 participants through the census method. In order to increase the test power, 310 healthy participants were included in the study through random selection. In order to evaluate the diagnostic value of self-reporting, BDI-II was completed by blind interviewing to the case group as well as to another group who reported that they were not depressed, as control. Results: sensitivity, specificity, accuracy, false positive, false negative, positive and negative predictive values of self-reporting was calculated 58.4%, 79.1%,73.4%, 20.8%, 41.6%, 51.8%, and 83.2% for the total population respectively, as well as, sensitivity, specificity, accuracy, positive and negative predictive values of self-report in males were 83.3%, 77.2%, 77.1%, 43.8% and 95.6% and 53.7%, 78.1%, 71.2%, 49.2%, and 81.1% for females, respectively. Conclusion: The positive predictive value and sensitivity of self-reporting are insufficient in total population and females, and therefore self-reporting cannot detect depressed patients, but regarding to its average positive predictive value, perhaps, it can be used to identify non-depressant individuals.

19.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20089151

RESUMO

BackgroundSARS-CoV-2 reverse transcriptase polymerase chain reaction (RT-PCR) testing remains the cornerstone of laboratory-based identification of patients with COVID-19. As the availability and speed of SARS-CoV-2 testing platforms improve, results are increasingly relied upon to inform critical decisions related to therapy, use of personal protective equipment, and workforce readiness. However, early reports of RT-PCR test performance have left clinicians and the public with concerns regarding the reliability of this predominant testing modality and the interpretation of negative results. In this work, two independent research teams report the frequency of discordant SARS-CoV-2 test results among initially negative, repeatedly tested patients in regions of the United States with early community transmission and access to testing. MethodsAll patients at the University of Washington (UW) and Stanford Health Care undergoing initial testing by nasopharyngeal (NP) swab between March 2nd and April 7th, 2020 were included. SARS-CoV-2 RT-PCR was performed targeting the N, RdRp, S, and E genes and ORF1ab, using a combination of Emergency Use Authorization laboratory-developed tests and commercial assays. Results through April 14th were extracted to allow for a complete 7-day observation period and an additional day for reporting. ResultsA total of 23,126 SARS-CoV-2 RT-PCR tests (10,583 UW, 12,543 Stanford) were performed in 20,912 eligible patients (8,977 UW, 11,935 Stanford) undergoing initial testing by NP swab; 626 initially test-negative patients were re-tested within 7 days. Among this group, repeat testing within 7 days yielded a positive result in 3.5% (4.3% UW, 2.8% Stanford) of cases, suggesting an initial false negative RT-PCR result; the majority (96.5%) of patients with an initial negative result who warranted reevaluation for any reason remained negative on all subsequent tests performed within this window. ConclusionsTwo independent research teams report the similar finding that, among initially negative patients subjected to repeat SARS-CoV-2 RT-PCR testing, the occurrence of a newly positive result within 7 days is uncommon. These observations suggest that false negative results at the time of initial presentation do occur, but potentially at a lower frequency than is currently believed. Although it is not possible to infer the clinical sensitivity of NP SARS-CoV-2 RT-PCR testing using these data, they may be used in combination with other reports to guide the use and interpretation of this common testing modality.

20.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20091231

RESUMO

The recent outbreak of the novel coronavirus SARS-CoV-2, which causes COVID-19, can be diagnosed using RT-qPCR, but inadequate access to reagents and equipment has slowed disease detection and impeded efforts to mitigate viral spread. Alternative approaches based on combinations of isothermal amplification and CRISPR-mediated detection, such as the SHERLOCK (Specific High Sensitivity Enzymatic Reporter UnLOCKing) technique, offer reduced dependence on RT-qPCR equipment, but previously reported methods required multiple fluid handling steps, complicating their deployment outside clinical labs. Here we developed a simple test chemistry called STOP (SHERLOCK Testing in One Pot) for detecting SARS-CoV-2 in one hour that is suitable for point-of-care use. This simplified test, STOPCovid, provides sensitivity comparable to RT-qPCR-based SARS-CoV-2 tests and has a limit of detection of 100 copies of viral genome input in saliva or nasopharyngeal swabs per reaction. Using lateral flow readout, the test returns result in 70 minutes, and using fluorescence readout, the test returns result in 40 minutes. Moreover, we validated STOPCovid using nasopharyngeal swabs from COVID-19 patients and were able to correctly diagnose 12 positive and 5 negative patients out of 3 replicates. We envision that implementation of STOPCovid will significantly aid "test-trace-isolate" efforts, especially in low-resource settings, which will be critical for long-term public health safety and effective reopening of the society.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...