Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mar Environ Res ; 199: 106615, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38941665

RESUMO

We examine how oxygen levels and the choice of 16S ribosomal RNA (rRNA) tags impact marine bacterial communities using Next-Generation amplicon sequencing. Analyzing V3 and V6 regions, we assess microbial composition in both Oxygen minimum zones (OMZ) and non-OMZ (NOMZ) areas in the Arabian Sea (AS) and the Central Indian Ocean basin (CIOB) respectively. Operational taxonomic units (OTUs) at 97% similarity showed slightly higher richness and diversity with V6 compared to V3. Vertical diversity patterns were consistent across both regions. NOMZ showed greater richness and diversity than OMZ. AS and CIOB exhibited significant differences in bacterial community, diversity, and relative abundance at the order and family levels. Alteromonadaceae dominated the OMZ, while Pelagibacteraceae dominated the NOMZ. Synechococcaceae were found exclusively at 250 m in OMZ. Bacteria putatively involved in nitrification, denitrification, and sulfurylation were detected at both sites. Dissolved oxygen significantly influenced microbial diversity at both sites, while seasonal environmental parameters affected diversity consistently, with no observed temporal variation.


Assuntos
Bactérias , Microbiota , Oxigênio , RNA Ribossômico 16S , RNA Ribossômico 16S/genética , Microbiota/genética , Oxigênio/metabolismo , Bactérias/genética , Bactérias/classificação , Oceano Índico , Código de Barras de DNA Taxonômico , Ecossistema , Água do Mar/microbiologia , Biodiversidade
2.
Evol Appl ; 17(4): e13692, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38681511

RESUMO

Endangered wild fish populations are commonly supported by hatchery propagation. However, hatchery-reared fish experience very different selective pressures compared to their wild counterparts, potentially causing genotype-by-environment interactions (G × E) in essential fitness traits. We experimentally studied early selection in a critically endangered landlocked Atlantic salmon population, first from fertilization to the swim-up stage in a common hatchery setting, and thereafter until the age of 5 months in two contrasting rearing environments. Swim-up progeny were moved either to standard indoor hatchery tanks involving conventional husbandry or to seminatural outdoor channels providing only natural food. After the first summer, sampled survivors were assigned to their families by genotyping. Early survival until the swim-up stage was mostly determined by maternal effects, but also involved significant variation due to sires and full-sib families (potential genetic effects). High on-growing survival in hatchery tanks (88.7%) maintained a more even distribution among families (relative share 1.5%-4.2%) than the seminatural environment (0.0%-5.4%). This heterogeneity was mostly maternal, whereas no independent paternal effect occurred. Heritability estimates were high for body size traits in both environments (0.62-0.69). Genetic correlations between the environments were significantly positive for body size traits (0.67-0.69), and high body condition in hatchery was also genetically linked to rapid growth in the seminatural environment (0.54). Additive and phenotypic growth variation increased in the seminatural environment, but scaling effects probably played a less significant role for G × E, compared to re-ranking of genotypes. Our results suggest that not only maternal effects, but also genetic effects, direct selection according to the environmental conditions experienced. Consistently high genetic variation in growth implies that, despite its low overall genetic diversity and long history in captive rearing (>50 years), this landlocked Atlantic salmon population still possesses adaptive potential for response to change from hatchery rearing back to more natural conditions.

3.
Microbes Environ ; 38(1)2023.
Artigo em Inglês | MEDLINE | ID: mdl-36696991

RESUMO

A significant amount of nitrous oxide (N2O) is effluxed into the atmosphere as a result of marine denitrification in the Arabian Sea (AS) oxygen minimum zone (OMZ). An assessment of temporal variations in the diversity and abundance of nosZ denitrifiers was performed to establish the relative importance of these bacteria in denitrification. Sampling was conducted at the Arabian Sea Time Series (ASTS) location and a quantitative PCR (qPCR) ana-lysis was performed. We detected a high abundance of the nosZ gene at core OMZ depths (250| |m and 500 m), indicating the occurrence of denitrification in the AS-OMZ. The maximum abundance of the nosZ gene was observed during the Spring Intermonsoon (SIM) at 250| |m (1.32×106 copies L-1) and 500| |m (1.50×106 copies L-1). Sequencing ana-lysis showed that nosZ denitrifiers belonged to the classes Alpha-, Beta-, and Gammaproteobacteria. Taxonomic ana-lysis revealed that most OTUs were affiliated with Pseudomonas, Rhodopseudomonas, and Bradyrhizobium. Diversity indices and richness estimators confirmed a higher diversity of nosZ denitrifiers at 250| |m than at 500| |m during all three seasons. The present results also indicated that dissolved oxygen (DO) and total organic carbon (TOC) are critical factors influencing the diversity and abundance of the nosZ-denitrifying bacterial community.


Assuntos
Desnitrificação , Gammaproteobacteria , Bactérias/genética , Gammaproteobacteria/genética , Reação em Cadeia da Polimerase , Óxido Nitroso , Microbiologia do Solo
4.
Environ Sci Technol ; 56(22): 15661-15671, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36326287

RESUMO

The smallest fraction of plastic pollution, submicron plastics (SMPs <1 µm) are expected to be ubiquitous in the environment. No information is available about SMPs in peatlands, which have a key role in sequestering carbon in terrestrial ecosystems. It is unknown how these plastic particles might behave and interact with (micro)organisms in these ecosystems. Here, we show that the chemical composition of polystyrene (PS) and poly(vinyl chloride) (PVC)-SMPs influenced their adsorption to peat. Consequently, this influenced the accumualtion of SMPs by Sphagnum moss and the composition and diversity of the microbial communities in peatland. Natural organic matter (NOM), which adsorbs from the surrounding water to the surface of SMPs, decreased the adsorption of the particles to peat and their accumulation by Sphagnum moss. However, the presence of NOM on SMPs significantly altered the bacterial community structure compared to SMPs without NOM. Our findings show that peatland ecosystems can potentially adsorb plastic particles. This can not only impact mosses themselves but also change the local microbial communities.


Assuntos
Microbiota , Sphagnopsida , Sphagnopsida/química , Sphagnopsida/microbiologia , Solo/química , Adsorção , Plásticos , Bactérias
5.
Aquat Toxicol ; 250: 106264, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35970114

RESUMO

Plastic pollution has been a growing environmental concern for decades, increasingly affecting both marine and freshwater ecosystems worldwide. Nano-sized plastic particles (NPs) potentially have various toxicological impacts on aquatic organisms and the ecosystem; however, less is known about their possible adverse effects on the reproductive biology and offspring traits of fishes. The present study investigated whether an acute exposure of gametes to aged NPs during fertilization affects offspring early mortality, hatching time, body size at hatching or swimming performance of larvae in a common freshwater fish, the European whitefish (Coregonus lavaretus). Using a replicated full-factorial breeding design, we fertilized the eggs of seven females with the milt of seven males both under exposure medium containing aged 270 nm polystyrene NPs and under control medium. In comparison with the control group, exposure of gametes to NPs increased larval body length slightly but significantly, whereas the embryo mortality, hatching time, and larval swimming performance were not affected. Maternal identity affected significantly all the studied offspring traits while paternal identity only affected the offspring length. Our results suggest that the studied acute exposure of gametes to aged NPs might have interfered normal embryonic development by affecting larval size, but this did not seemingly compromise offspring performance.


Assuntos
Salmonidae , Poluentes Químicos da Água , Animais , Ecossistema , Feminino , Fertilização , Células Germinativas , Larva , Masculino , Plásticos , Poluentes Químicos da Água/toxicidade
6.
J Evol Biol ; 35(11): 1407-1413, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35988118

RESUMO

Cryptic female choice (CFC) is commonly assumed to act only in polyandrous mating systems, which allows females to bias fertilization towards the sperm of particular males. However, accumulated evidence has demonstrated that sperm show significant phenotypic and genotypic variation also within single ejaculates, which have important consequences for offspring phenotype and fitness. Here, I argue that these neglected sources of intra-male sperm variation often allow CFC to act also within individual males and facilitate fertilization bias towards genetically compatible (or otherwise preferred) sperm haplotypes. In this article, I explain prerequisites for within-male CFC, the criteria for demonstrating it and summarize accumulated evidence for this emerging selection process. Then, I evaluate prevalence of within-male CFC and review its potential evolutionary consequences. The aim of this article is to broaden the current definition of CFC by demonstrating that CFC has potential to act in all mating systems, in both internally and externally fertilizing species. Incorporation of the within-male CFC concept into the current models of sexual selection may provide novel insights into the deeper understanding of selective factors driving the evolution of mating systems and reproductive proteins. Finally, within-male CFC towards particular sperm haplotypes may increase our understanding of non-Mendelian inheritance.


Assuntos
Sêmen , Seleção Sexual , Masculino , Feminino , Animais , Fertilização , Espermatozoides , Reprodução
7.
Cells ; 11(14)2022 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-35883590

RESUMO

Seminal plasma (SP) plays a crucial role in reproduction and contains a large number of proteins, many of which may potentially modify sperm functionality. To evaluate the effects of SP identity and its protein composition on human sperm function, we treated the sperm of several males with either their own or multiple foreign SPs in all possible sperm-SP combinations (full-factorial design). Then we recorded sperm motility and viability in these combinations and investigated whether the sperm performance is dependent on sperm and SP identity (or their interaction). Finally, we studied whether the above-mentioned sperm traits are affected by the abundance of three SP proteins, dipeptidyl peptidase-4 (DPP4), neutral endopeptidase (NEP), and aminopeptidase N (APN). The identity of the SP donor affected sperm swimming velocity, viability, and the proportion of hyperactivated sperm, but males' own SP was not consistently more beneficial for sperm than foreign SPs. Furthermore, we show that sperm performance is also partly affected by the interaction between sperm and SP donor. Finally, we found that DPP4 and NEP levels in SP were positively associated with sperm swimming velocity and hyperactivation. Taken together, our results highlight the importance of seminal plasma as a potential source of biomarkers for diagnostics and therapeutic interventions for male-derived infertility.


Assuntos
Infertilidade Masculina , Sêmen , Dipeptidil Peptidase 4/metabolismo , Humanos , Infertilidade Masculina/metabolismo , Masculino , Neprilisina/metabolismo , Sêmen/metabolismo , Motilidade dos Espermatozoides , Espermatozoides/metabolismo
8.
NanoImpact ; 25: 100382, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35559888

RESUMO

Little is known about how particle chemical composition and size might influence the toxicity of nanoscale plastic debris (NPD) and their co-occurring chemicals. Herein, we investigate the toxicity of 3 × 1010 particles/L polyethylene (PE, 50 nm), polypropylene (PP, 50 nm), polystyrene (PS, 200 and 600 nm), and polyvinyl chloride (PVC, 200 nm) NPD and their co-occurring benzo(a)pyrene (BaP) to Daphnia magna and Danio rerio. During the 21 days of exposure to PE 50 nm and PS 200 nm, the number of broods produced by D. magna decreased compared to other treatments. Exposure to BaP alone did not produce any effects on the reproduction of the daphnids, however, the mixture of BaP with PS (200 or 600 nm) or with PE (50 nm) reduced the number of broods. Exposure of D. rerio embryos to PE 50 nm, PS 200 nm, and PS 600 nm led to a delay in the hatching. The presence of PS 200 nm and PVC 200 nm eliminated the effects of BaP on the hatching rate of zebrafish. Our findings suggest that data generated for the toxicity of one type of NPD, e.g. PVC or PS may not be extrapolated to other types of NPD.


Assuntos
Daphnia , Poluentes Químicos da Água , Animais , Organismos Aquáticos , Benzo(a)pireno/toxicidade , Tamanho da Partícula , Plásticos/toxicidade , Cloreto de Polivinila/toxicidade , Poluentes Químicos da Água/toxicidade , Peixe-Zebra
9.
Int J Mol Sci ; 23(7)2022 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-35408797

RESUMO

Infertility is assumed to arise exclusively from male- and female-dependent pathological factors. However, recent studies have indicated that reproductive failure may also result from the reproductive incompatibility of the partners. Selection against such incompatibilities likely occurs via female-derived reproductive secretions, including follicular fluid (FF), that mediate gamete-level mate choice towards the sperm of specific males. To facilitate potential development of diagnostic tests for human reproductive incompatibility, we examined whether sperm physiological response to female serum indicate male-female compatibility in the presence of FF. We performed a full-factorial experiment, in which the sperm of 10 males were treated with the FF and serum of 6 healthy females. We found that sperm motility and viability in both biofluids were highly similar and that in 70% of the males, sperm serum treatment predicted male-female compatibility. We also identified male human leucocyte antigen (HLA) alleles and female (FF and serum) anti-HLA antibodies and tested whether the number of allele-antibody matches predict sperm physiological response to female fluids. However, no association was found between measured sperm traits and the number of allele-antibody matches. Overall, the present results may open novel possibilities for the future development of reproductive incompatibility tests and may pave the way towards more accurate infertility diagnostics and treatments.


Assuntos
Infertilidade , Motilidade dos Espermatozoides , Feminino , Células Germinativas , Humanos , Masculino , Reprodução , Espermatozoides/fisiologia
10.
J Evol Biol ; 35(2): 254-264, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35000241

RESUMO

In many species, mate choice continues after the mating via female- or egg-derived biochemical factors that induce selective changes in sperm pre-fertilization physiology and behaviour. Recent studies have indicated that gamete-mediated mate choice likely occurs also in humans, but the mechanistic basis of the process has remained virtually unexplored. Here, we investigated whether female-induced modifications in sperm protein SUMOylation (post-translational modification of the proteome) could serve as a novel mechanism for gamete-mediated mate choice in humans. We treated the sperm of ten males with the oocyte-surrounding bioactive liquid (follicular fluid) of five females and investigated motility, viability and global protein SUMOylation status of the sperm in all (n = 50) of these male-female combinations (full-factorial design). All the measured sperm traits were affected by male-female combinations, and sperm protein SUMOylation status was also negatively associated with sperm motility. Furthermore, our results indicate that female-induced sperm protein SUMOylation is selective, potentially allowing females to increase sperm motility in some males, whereas decreasing it in the others. Consequently, our findings suggest that follicular fluid may non-randomly modify the structure and function of sperm proteome and in this way facilitate gamete-mediated mate choice in humans and possibly many other species. However, due to the relatively low number of female subjects and their potential infertility problems, our results should be replicated with larger subset of fully fertile women.


Assuntos
Motilidade dos Espermatozoides , Sumoilação , Feminino , Fertilização , Células Germinativas , Humanos , Masculino , Espermatozoides/fisiologia
11.
Hum Reprod ; 36(12): 3028-3035, 2021 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-34580729

RESUMO

In natural fertilisation, the female reproductive tract allows only a strictly selected sperm subpopulation to proceed in the vicinity of an unfertilised oocyte. Female-mediated sperm selection (also known as cryptic female choice (CFC)) is far from a random process, which frequently biases paternity towards particular males over others. Earlier studies have shown that CFC is a ubiquitous phenomenon in the animal kingdom and often promotes assortative fertilisation between genetically compatible mates. Here, I demonstrate that CFC for genetic compatibility likely also occurs in humans and is mediated by a complex network of interacting male and female genes. I also show that the relative contribution of genetic compatibility (i.e. the male-female interaction effect) to reproductive success is generally high and frequently outweighs the effects of individual males and females. Together, these facts indicate that, along with male- and female-dependent pathological factors, reproductive failure can also result from gamete-level incompatibility of the reproductive partners. Therefore, I argue that a deeper understanding of these evolutionary mechanisms of sperm selection can pave the way towards a more inclusive view of infertility and open novel possibilities for the development of more personalised infertility diagnostics and treatments.


Assuntos
Infertilidade , Reprodução , Animais , Evolução Biológica , Feminino , Células Germinativas , Humanos , Infertilidade/genética , Masculino , Reprodução/genética , Espermatozoides
12.
Environ Pollut ; 291: 118196, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34555795

RESUMO

Exposure of aquatic organisms to micro- and nano-sized plastic debris in their environment has become an alarming concern. Besides having a number of potentially harmful impacts for individual organisms, plastic particles can also influence the phenotype and performance of their offspring. We tested whether the sperm pre-fertilization exposure to nanoplastic particles could affect offspring survival, size, and swimming performance in the European whitefish Coregonus lavaretus. We exposed sperm of ten whitefish males to three concentrations (0, 100 and 10 000 pcs spermatozoa-1) of 50 nm carboxyl-coated polystyrene spheres, recorded sperm motility parameters using computer assisted sperm analysis (CASA) and then fertilized the eggs of five females in all possible male-female combinations. Finally, we studied embryonic mortality, hatching time, size, and post-hatching swimming performance of the offspring. We found that highest concentration of plastic particles decreased sperm motility and offspring hatching time. Furthermore, sperm exposure to highest concentration of plastics reduced offspring body mass and impaired their swimming ability. This suggests that sperm pre-fertilization exposure to plastic pollution may decrease male fertilization potential and have important transgenerational impacts for offspring phenotype and performance. Our findings indicate that nanoplastics pollution may have significant ecological and evolutionary consequences in aquatic ecosystems.


Assuntos
Salmonidae , Motilidade dos Espermatozoides , Animais , Ecossistema , Feminino , Fertilização , Masculino , Plásticos , Espermatozoides , Natação
13.
J Evol Biol ; 34(7): 1125-1132, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34056789

RESUMO

Human leucocyte antigen (HLA) genes appear to mediate pre- and post-copulatory mate choice towards HLA-dissimilar ('compatible') partners. However, since genetically distinct alleles often have similar immunogenic properties, genetic dissimilarity is not necessarily an accurate predictor of the functional compatibility of HLA alleles and, hence, may not reflect partners' true compatibility. Furthermore, it has remained unclear whether other genes of the immune system could also play a role in male-female compatibility. We studied whether the immunoglobulin binding regions (eplets) of HLA molecules and the immunoglobulin structural dissimilarity of the partners affect their gamete-level compatibility. We exposed sperm of multiple men to follicular fluid or cervical mucus of multiple women and tested whether sperm viability in these reproductive secretions was influenced by HLA eplet and immunoglobulin structural dissimilarity between partners. We found that eplet dissimilarity positively affects sperm viability in follicular fluid, whereas immunoglobulin dissimilarity enhanced sperm viability in cervical mucus. Together, these findings indicate that structural characteristics of both HLA alleles and immunoglobulins may facilitate cryptic female choice towards immunologically compatible partners. Our results, thus, indicate that partners' genetic compatibility may have wider immunological basis than traditionally has been assumed. Relative contribution of different immunogenetic factors to overall compatibility of the reproductive partners needs to be clarified in future studies.


Assuntos
Reprodução , Espermatozoides , Alelos , Feminino , Células Germinativas , Humanos , Masculino , Reprodução/genética
14.
J Fish Biol ; 99(3): 1130-1134, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33934348

RESUMO

Cadmium (Cd) exposure can impair the traits of aquatic animals associated with reproduction. In natural lakes Cd is typically detected at concentrations below 0.001 mg l-1 . The authors investigated the impact of ultra-acute Cd exposure on sperm motility in European whitefish (Coregonus lavaretus). They activated sperm with water containing various nominal concentrations of Cd and recorded sperm motility parameters. Only the highest Cd concentration (500 mg l-1 ) was associated with decreased sperm swimming velocity and increases in both the percentage of static cells and curvature of the sperm swimming trajectory. The results indicate that environmentally realistic concentrations of Cd during the sperm motility activation are not critically harmful to male C. lavaretus fertilization potential.


Assuntos
Salmonidae , Motilidade dos Espermatozoides , Animais , Cádmio/toxicidade , Lagos , Masculino , Espermatozoides
15.
Proc Biol Sci ; 287(1933): 20201682, 2020 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-32811307

RESUMO

Several studies have demonstrated that women show pre-copulatory mating preferences for human leucocyte antigen (HLA)-dissimilar men. A fascinating, yet unexplored, possibility is that the ultimate mating bias towards HLA-dissimilar partners could occur after copulation, at the gamete level. Here, we explored this possibility by investigating whether the selection towards HLA-dissimilar partners occurs in the cervical mucus. After combining sperm and cervical mucus from multiple males and females (full factorial design), we found that sperm performance (swimming velocity, hyperactivation, and viability) was strongly influenced by the male-female combination. This indicates that sperm fertilization capability may be dependent on the compatibility between cervical mucus (female) and sperm (male). We also found that sperm viability was associated with partners' HLA dissimilarity, indicating that cervical mucus may selectively facilitate later gamete fusion between immunogenetically compatible partners. Together, these results provide novel insights into the female-mediated sperm selection (cryptic female choice) in humans and indicate that processes occurring after copulation may contribute to the mating bias towards HLA-dissimilar partners. Finally, by showing that sperm performance in cervical mucus is influenced by partners' genetic compatibility, the present findings may promote a deeper understanding of infertility.


Assuntos
Muco do Colo Uterino/fisiologia , Antígenos HLA/fisiologia , Espermatozoides/fisiologia , Humanos , Infertilidade , Masculino , Reprodução
16.
Heredity (Edinb) ; 125(5): 281-289, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32747723

RESUMO

Human leukocyte antigen (HLA) immune genes play an important role in partner selection, but it has remained unclear if nonrandom pairing with respect to parental HLA genes could occur at the level of the gametes. We tested this possibility by investigating whether the sperm fertilization competence in humans is dependent on HLA genotype combination of the partners. We conducted a full-factorial experiment, in which the sperm physiological preparation for fertilization among multiple males was studied in the presence of follicular fluid (oocyte surrounding bioactive liquid) of several females. All the studied sperm pre-fertilization physiological parameters (motility, hyperactivation, acrosome reaction, and viability) were strongly dependent on male-female combination. In other words, follicular fluids (women) that induce strong sperm physiological response in some males often induce much weaker response in the other(s). Sperm physiological responses were stronger in HLA-dissimilar male-female pairs than in HLA-similar combinations, but none of the measured sperm traits were associated with genome-wide similarity. Together, these findings shed new light on the evolutionary and immunological mechanisms of fertilization. Furthermore, our results raise an intriguing possibility that against currently prevailing WHO's definition, infertility may not represent exclusively a pathological condition, but may also result from immunogenetic incompatibility of the gametes.


Assuntos
Células Germinativas/imunologia , Imunogenética , Infertilidade , Espermatozoides/imunologia , Feminino , Fertilização/genética , Humanos , Modelos Lineares , Masculino , Modelos Genéticos
17.
Environ Pollut ; 262: 114353, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32443205

RESUMO

The presence of microplastics in aquatic ecosystems has recently received increased attention. Small plastic particles may resemble natural food items of larval fish and other aquatic organisms, and create strong selective pressures on the feeding traits in exposed populations. Here, we examined if larval ingestion of 90 µm polystyrene microspheres, in the presence of zooplankton (Artemia nauplii, mean length = 433 µm), shows adaptive variation in the European whitefish (Coregonus lavaretus). A full-factorial experimental breeding design allowed us to estimate the relative contributions of male (sire) and female (dam) parents and full-sib family variance in early feeding traits, and also genetic (co)variation between these traits. We also monitored the magnitude of intake and elimination of microplastics from the alimentary tracts of the larvae. In general, larval whitefish ingested small numbers of microplastics (mean = 1.8, range = 0-26 particles per larva), but ingestion was marginally affected by the dam, and more strongly by the full-sib family variation. Microsphere ingestion showed no statistically significant additive genetic variation, and thus, no heritability. Moreover, microsphere ingestion rate covaried positively with the ingestion of Artemia, further suggesting that larvae cannot adaptively avoid microsphere ingestion. Together with the detected strong genetic correlation between food intake and microplastic intake, the results suggest that larval fish do not readily possess additive genetic variation that would help them to adapt to the increasing pollution by microplastics. The conflict between feeding on natural food and avoiding microplastics deserves further attention.


Assuntos
Salmonidae , Poluentes Químicos da Água/análise , Animais , Ingestão de Alimentos , Ecossistema , Monitoramento Ambiental , Feminino , Larva , Masculino , Microplásticos , Plásticos
18.
J Evol Biol ; 33(5): 584-594, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31984576

RESUMO

In a large majority of animal species, the only contribution of males to the next generation has been assumed to be their genes (sperm). However, along with sperm, seminal plasma contains a wide array of extracellular factors that have many important functions in reproduction. Yet, the potential intergenerational effects of these factors are virtually unknown. We investigated these effects in European whitefish (Coregonus lavaretus) by experimentally manipulating the presence and identity of seminal plasma and by fertilizing the eggs of multiple females with the manipulated and unmanipulated semen of several males in a full-factorial breeding design. The presence of both own seminal plasma and foreign seminal plasma inhibited sperm motility, and the removal of own seminal plasma decreased embryo survival. Embryos hatched significantly earlier after both semen manipulations than in control fertilizations; foreign seminal plasma also increased offspring aerobic swimming performance. Given that our experimental design allowed us to control potentially confounding sperm-mediated (sire) effects and maternal effects, our results indicate that seminal plasma may have direct intergenerational consequences for offspring phenotype and performance. This novel source of offspring phenotypic variance may provide new insights into the evolution of polyandry and mechanisms that maintain heritable variation in fitness and associated female mating preferences.


Assuntos
Herança Paterna , Fenótipo , Salmonidae/fisiologia , Sêmen/fisiologia , Animais , Feminino , Masculino , Motilidade dos Espermatozoides , Natação
19.
Physiol Biochem Zool ; 91(6): 1115-1128, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30295572

RESUMO

The pace-of-life syndrome (POLS) concept predicts that individuals with high baseline metabolic rates demonstrate high boldness, aggressiveness, and activity, especially in food acquisition, with associated relatively greater energy requirements. In fishes, these behaviors may increase individual vulnerability to angling. To test the predictions of the POLS concept, we quantified individual standard metabolic rate (SMR) and boldness in both wild-caught and hatchery-reared Eurasian perch (Perca fluviatilis). We found both SMR and boldness to be repeatable traits but detected no correlation between them. Individual vulnerability to angling was assessed in the hatchery-reared perch, but we found no difference in boldness or SMR between vulnerable and nonvulnerable perch. Wild-caught perch were ice fished using either natural or artificial bait, and we observed no differences in boldness or SMR with respect to bait type or capture order. Our findings do not support the predictions of the POLS concept and, consistent with earlier studies in perch, suggest that angling may not drive selection against boldness in this species.


Assuntos
Agressão , Metabolismo Basal , Pesqueiros , Percas/fisiologia , Tiroxina/sangue , Animais , Comportamento Alimentar , Finlândia , Percas/genética , Fenótipo
20.
J Exp Biol ; 221(Pt 20)2018 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-30171097

RESUMO

The sperm pre-fertilization environment has recently been suggested to mediate remarkable transgenerational consequences for offspring phenotype (transgenerational plasticity, TGB), but the adaptive significance of the process has remained unclear. Here, we studied the transgenerational effects of sperm pre-fertilization thermal environment in a cold-adapted salmonid, the European whitefish (Coregonus lavaretus). We used a full-factorial breeding design where the eggs of five females were fertilized with the milt of 10 males that had been pre-incubated at two different temperatures (3.5°C and 6.5°C) for 15 h prior to fertilization. Thermal manipulation did not affect sperm motility, cell size, fertilization success or embryo mortality. However, offspring that were fertilized with 6.5°C-exposed milt were smaller and had poorer swimming performance than their full-siblings that had been fertilized with the 3.5°C-exposed milt. Furthermore, the effect of milt treatment on embryo mortality varied among different females (treatment×female interaction) and male-female combinations (treatment×female×male interaction). Together, these results indicate that sperm pre-fertilization thermal environment shapes offspring phenotype and post-hatching performance and modifies both the magnitude of female (dam) effects and the compatibility of the gametes. Generally, our results suggest that short-term changes in sperm thermal conditions may have negative impact for offspring fitness. Thus, sperm thermal environment may have an important role in determining the adaptation potential of organisms to climate change. Detailed mechanism(s) behind our findings require further attention.


Assuntos
Fertilização/fisiologia , Temperatura Alta , Fenótipo , Salmonidae/fisiologia , Espermatozoides/fisiologia , Animais , Masculino , Motilidade dos Espermatozoides
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...