Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 104(Pt A): 311-321, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28602989

RESUMO

Various microorganisms isolated from polluted environments, such as Pseudomonas sp. and Micrococcus sp. can synthesize exopolysaccharides (EPSs) which are natural, non-toxic and biodegradable polymers. EPSs play a key role in protection of microbial cells under various external influences. For humans, these substances have potential use in many industries. EPSs can be applied as a flavor or a fragrance carrier, an emulsifier, a stabilizer, a prebiotic, an antioxidant or an antitumor agent. In this study, we characterized an environmental microorganism that produces EPS, optimized EPS production by this strain and characterized the EPS produced. Isolate CH-KOV3 was identified as Brachybacterium paraconglomeratum. The sucrose level in the growth medium greatly influenced EPS production, and the highest yield was when the microorganism was incubated in media with 500g/L of sucrose. The optimal temperature and pH were 28°C and 7.0, respectively. The nuclear magnetic resonance (NMR) results and GC-MS analysis confirmed that the residues were d-fructofuranosyl residues with ß-configuration, where fructose units are linked by ß-2,6-glycosidic bonds, with ß-2,1-linked branches. All these data indicate that the investigated EPS is a levan-type polysaccharide. Thus, it was concluded that Brachybacterium sp. CH-KOV3 could constitute a new source for production of the bioactive polysaccharide, levan.


Assuntos
Actinobacteria/isolamento & purificação , Actinobacteria/metabolismo , Poluição Ambiental , Frutanos/biossíntese , Petróleo/microbiologia , Concentração de Íons de Hidrogênio , Temperatura
2.
Carbohydr Polym ; 154: 20-9, 2016 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-27577892

RESUMO

Novel macromolecular graft copolymers were synthesized by reaction of the hydroxyl groups of the microbial polysaccharide levan, produced using Bacillus licheniformis, with polystyrene (Lev-g-PS). Synthesis was performed by the free radical reaction using potassium persulfate (PPS) as initiator. The prepared copolymer was characterized by FTIR, SEM, TG/DTA, XRD and (13)C NMR. The influence of the different conditions (reaction temperature, air or nitrogen atmosphere, reaction time, type of amines and ascorbic acid (AA) concentration) on the grafting reaction was investigated. Results showed that maximum percentage of grafting (58.1%) was achieved at a reaction temperature 70°C, in a nitrogen atmosphere and using dimethylethanolamine (DMEA) as the amine activator. On the basis of the obtained results, the likely reaction mechanism was proposed. Synthesized copolymers have better thermal stability in comparison with their initial components. Copolymers such as Lev-g-PS could potentially have many applications, such as compatibilizers and material for membranes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...