Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 15(4)2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-35207847

RESUMO

External bonding of fiber reinforced composites is currently the most popular method of strengthening building structures. Debonding performance is critical to the effectiveness of such strengthening. Many models of bond prediction can be found in the literature. Most of them were developed based on laboratory research, therefore, their accuracy with less popular strengthening systems is limited. This manuscript presents the possibility of using a model based on neural networks to analyze and predict the debonding strength of steel-reinforced polymer (SRP) and steel-reinforced grout (SRG) composites to concrete. The model is built on the basis of laboratory testing of 328 samples obtained from the literature. The results are compared with a dozen of the most popular analytical methods for predicting the load capacity. The prediction accuracy in the neural network model is by far the best. The total correlation coefficient reaches a value of 0.913 while, for the best analytical method (Swiss standard SIA 166 model), it is 0.756. The sensitivity analysis confirmed the importance of the modulus of elasticity and the concrete strength for debonding. It is also interesting that the width of the element proved to be very important, which is probably related to the low variability of this parameter in the laboratory tests.

2.
Materials (Basel) ; 14(19)2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34640033

RESUMO

Prominence of concrete is characterized by its high mechanical properties and durability, combined with multifunctionality and aesthetic appeal. Development of alternative eco-friendly or multipurpose materials has conditioned improvements in concrete mix design to optimize concrete production speed and price, as well as carbon footprint. Artificial neural networks represent a new and efficient tool in achieving optimal concrete mixtures according to its intended function. This paper addresses concrete mix design and the application of artificial neural networks (ANNs) for self-sensing concrete. The authors review concrete mix design methods and the development of ANNs for prediction of properties for various types of concrete. Furthermore, the authors present developments and applications of ANNs for prediction of compressive strength and flexural strength of carbon nanotubes/carbon nanofibers (CNT/CNF) reinforced concrete using experimental results for the learning process. The goal is to bring the ANN approach closer to a variety of concrete researchers and possibly propose the implementation of ANNs in the civil engineering practice.

3.
RSC Adv ; 10(39): 23038-23048, 2020 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-35520311

RESUMO

Carbon nanotube/concrete composite possesses piezoresistivity i.e. self-sensing capability of concrete structures even in large scale. By incorporating smart materials in the structural health monitoring systems the issue of incompatibility between monitored structure and the sensor is surpassed since the concrete element fulfills both functions. Machine learning is an attractive tool to reduce model complexity, so artificial neural networks have been successfully used for a variety of applications including structural analysis and materials science. The idea of using smart materials can become more attractive by building a neural network able to predict properties of the specific nanomodified concrete, making it more cost-friendly and open for unexperienced engineers. This paper reviews previous research work which is exploring the properties of CNTs and their influence on concrete, and the use of artificial neural networks in concrete technology and structural health monitoring. Mix design of CNT/concrete composite materials combined with the application of precisely trained artificial neural networks represents a new direction in the evolution of structural health monitoring of concrete structures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...