Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biosens Bioelectron ; 246: 115879, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38056344

RESUMO

Motor proteins, such as myosin and kinesin, are biological molecular motors involved in force generation and intracellular transport within living cells. The characteristics of molecular motors, i.e., their motility over long distances, their capacity of transporting cargoes, and their very efficient energy consumption, recommend them as potential operational elements of a new class of dynamic nano-devices, with potential applications in biosensing, analyte concentrators, and biocomputation. A possible design of a biosensor based on protein molecular motor comprises a surface with immobilized motors propelling cytoskeletal filaments, which are decorated with antibodies, presented as side-branches. Upon biomolecular recognition of these branches by secondary antibodies, the 'extensions' on the cytoskeletal filaments can achieve considerable lengths (longer than several diameters of the cytoskeletal filament carrier), thus geometrically impairing or halting motility. Because the filaments are several micrometers long, this sensing mechanism converts an event in the nanometer range, i.e., antibody-antigen sizes, into an event in the micrometer range: the visualization of the halting of motility of microns-long cytoskeletal filaments. Here we demonstrate the proof of concept of a sensing system comprising heavy-mero-myosin immobilized on surfaces propelling actin filaments decorated with actin antibodies, whose movement is halted upon the recognition with secondary anti-actin antibodies. Because antibodies to the actin-myosin system are involved in several rare diseases, the first possible application for such a device may be their prognosis and diagnosis. The results also provide insights into guidelines for designing highly sensitive and very fast biosensors powered by motor proteins.


Assuntos
Actinas , Técnicas Biossensoriais , Citoesqueleto de Actina/metabolismo , Miosinas/metabolismo , Citoesqueleto/metabolismo , Anticorpos/metabolismo , Cinesinas/metabolismo
2.
Biophys Rev ; 12(4): 761-762, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32642928

RESUMO

In this commentary, we reflect on our experiences being PhD students of Prof. Cris dos Remedios in the Muscle Research Unit at The University of Sydney at the turn of the new millennium. Cris was/is an example of a fine scientist and a great academic mentor for us and so many others (scientists, academics, surgeons, medical doctors and health professionals) who carry the legacy and traditions of Cris dos Remedios into the future.

3.
Langmuir ; 23(21): 10846-54, 2007 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-17854206

RESUMO

We studied the impact of surface hydrophobicity on the motility of actin filaments moving on heavy-meromyosin (HMM)-coated surfaces. Apart from nitrocellulose (NC), which is the current standard for motility assays, all materials tested are good candidates for microfabrication: hydrophilic and hydrophobic glass, poly(methyl methacrylate) (PMMA), poly(tert-butyl methacrylate) (PtBuMA), and a copolymer of O-acryloyl acetophenone oxime with a 4-acryloyloxybenzophenone (AAPO). The most hydrophilic (hydrophilic glass, contact angle 35 degrees) and the most hydrophobic (PtBuMA, contact angle 78 degrees) surfaces do not maintain the motility of actin filaments, presumably because of the low density of adsorbed HMM protein or its high levels of denaturation, respectively. The velocity of actin filaments presents higher values in the middle of this "surface hydrophobicity motility window" (NC, PMMA), and a bimodal distribution, which is more apparent at the edges of this motility window (hydrophobic glass and AAPO). A molecular surface analysis of HMM and its S1 units suggests that the two very different, temporally separated conformations of the HMM heads could exacerbate the surface-modulated protein behavior, which is common to all microdevices using surface-immobilized proteins. An explanation for the above behavior proposes that the motility of actin filaments on HMM-functionalized surfaces is the result of the action of three populations of motors, each in a different surface-protein conformation, that is, HMM with both heads working (high velocities), working with one head (low velocities), and fully denatured HMM (no motility). It is also proposed that the molecularly dynamic nature of polymer surfaces amplifies the impact of surface hydrophobicity on protein behavior. The study demonstrates that PMMA is a good candidate for the fabrication of future actomyosin-driven dynamic nanodevices because it induces the smoothest motility of individual nano-objects with velocities comparable with those obtained on NC.


Assuntos
Actomiosina/química , Nanotecnologia , Adsorção , Polímeros/química , Desnaturação Proteica , Proteínas/química , Propriedades de Superfície
4.
Toxicol Pathol ; 31(5): 514-23, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-14692620

RESUMO

The fate of inspired mercury vapour (Hg0) is critical in the central nervous system (CNS) where it can circumvent the blood-brain barrier (BBB) at the neuromuscular junction (NMJ) and accumulate indefinitely in motor neurons by retrograde transport. The detoxification of systemic Hg0 by lung and liver requires investigation. We exposed 129/Sv wild-type (Wt) and 129/Sv MT-I, II double knockout (KO) mice to 500 microg Hg0/m3 for 4 hours to investigate the expression of MT in the lung, liver, and spinal cord following Hg0 exposure using unexposed groups as controls. There were congestive changes in liver and lung of both Wt and MT-KO groups of Hg0-treated mice; these changes appeared more pronounced in the MT-KO group. Motor neurons in the spinal cord did not show any pathological changes. Based on expression of MT, liver appears to have a major role in trapping and stabilising mercury. In the spinal cord, MT was expressed in all white matter astrocytes and in some grey matter astrocytes. Notably, motor neurons did not express MT, and the presence of MT could not be demonstrated in the axons of the ventral root. The absence of MT expression in motor neurons and their axons suggests the dependence of the motor system on the detoxifying capacity of liver MTs.


Assuntos
Encéfalo/metabolismo , Sistema Nervoso Central/metabolismo , Fígado/metabolismo , Pulmão/metabolismo , Mercúrio/toxicidade , Metalotioneína/metabolismo , Músculo Esquelético/metabolismo , Administração por Inalação , Animais , Encéfalo/efeitos dos fármacos , Sistema Nervoso Central/efeitos dos fármacos , Imuno-Histoquímica , Fígado/efeitos dos fármacos , Fígado/patologia , Pulmão/efeitos dos fármacos , Pulmão/patologia , Mercúrio/metabolismo , Metalotioneína/deficiência , Metalotioneína/genética , Camundongos , Camundongos Endogâmicos , Camundongos Knockout , Modelos Biológicos , Músculo Esquelético/efeitos dos fármacos , Fatores de Tempo , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...