Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Elife ; 122024 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-39356734

RESUMO

To function effectively as an integrated system, the transcriptional and post-transcriptional machineries must communicate through mechanisms that are still poorly understood. Here, we focus on the zinc-finger Sfp1, known to regulate transcription of proliferation-related genes. We show that Sfp1 can regulate transcription either by binding to promoters, like most known transcription activators, or by binding to the transcribed regions (gene bodies), probably via RNA polymerase II (Pol II). We further studied the first mode of Sfp1 activity and found that, following promoter binding, Sfp1 binds to gene bodies and affects Pol II configuration, manifested by dissociation or conformational change of its Rpb4 subunit and increased backtracking. Surprisingly, Sfp1 binds to a subset of mRNAs co-transcriptionally and stabilizes them. The interaction between Sfp1 and its client mRNAs is controlled by their respective promoters and coincides with Sfp1's dissociation from chromatin. Intriguingly, Sfp1 dissociation from the chromatin correlates with the extent of the backtracked Pol II. We propose that, following promoter recruitment, Sfp1 accompanies Pol II and regulates backtracking. The backtracked Pol II is more compatible with Sfp1's relocation to the nascent transcripts, whereupon Sfp1 accompanies these mRNAs to the cytoplasm and regulates their stability. Thus, Sfp1's co-transcriptional binding imprints the mRNA fate, serving as a paradigm for the cross-talk between the synthesis and decay of specific mRNAs, and a paradigm for the dual-role of some zinc-finger proteins. The interplay between Sfp1's two modes of transcription regulation remains to be examined.


The ability to fine-tune the production of proteins in a cell is essential for organisms to exist. An imbalance in protein levels can be the cause of various diseases. Messenger RNA molecules (mRNA) link the genetic information encoded in DNA and the produced proteins. Exactly how much protein is made mostly depends on the amount of mRNA in the cell's cytoplasm. This is controlled by two processes: the synthesis of mRNA (also known as transcription) and mRNA being actively degraded. Although much is known about mechanisms regulating transcription and degradation, how cells detect if they need to degrade mRNA based on the levels of its synthesis and vice versa is poorly understood. In 2013, researchers found that proteins known as 'RNA decay factors' responsible for mRNA degradation are actively moved from the cell's cytoplasm into its nucleus to instruct the transcription machinery to produce more mRNA. Kelbert, Jordán-Pla, de-Miguel-Jiménez et al. ­ including some of the researchers involved in the 2013 work ­ investigated how mRNA synthesis and degradation are coordinated to ensure a proper mRNA level. The researchers used advanced genome engineering methods to carefully manipulate and measure mRNA production and degradation in yeast cells. The experiments revealed that the protein Sfp1 ­ a well-characterized transcription factor for stimulating the synthesis of a specific class of mRNAs inside the nucleus ­ can also prevent the degradation of these mRNAs outside the nucleus. During transcription, Sfp1 bound directly to mRNA. The investigators could manipulate the co-transcriptional binding of Sfp1 to a certain mRNA, thereby changing the mRNA stability in the cytoplasm. This suggests that the ability of Sfp1 to regulate both the production and decay of mRNA is dependent on one another and that transcription can influence the fate of its transcripts. This combined activity can rapidly change mRNA levels in response to changes in the cell's environment. RNA plays a key role in ensuring correct levels of proteins. It can also function as an RNA molecule, independently of its coding capacity. Many cancers and developmental disorders are known to be caused by faulty interactions between transcription factors and nucleic acids. The finding that some transcription factors can directly regulate both mRNA synthesis and its destruction introduces new angles for studying and understanding these diseases.


Assuntos
RNA Polimerase II , RNA Mensageiro , Fatores de Transcrição , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , RNA Polimerase II/metabolismo , RNA Polimerase II/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Estabilidade de RNA , Regiões Promotoras Genéticas , Ligação Proteica , Dedos de Zinco , Transcrição Gênica , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Citoplasma/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae
2.
Clin Case Rep ; 9(4): 2305-2309, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33936684

RESUMO

Same clinical entity can have different biology and can behave differently. This must be kept in mind while making therapeutic decisions. Primary effusion lymphoma is a rare and devastating disease with high fatality. Chemotherapy provides limited benefit. We describe a unique case of a good outcome with steroid alone treatment.

3.
EJHaem ; 1(1): 304-308, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35847714

RESUMO

Autoimmune myelofibrosis (AIMF) is an uncommon cause of myelofibrosis associated with favorable outcome. Primary AIMF, AIMF without a known systemic autoimmune disorder, has been described in adults, but never in children. Here, we present, for the first time, an apparent case of primary AIMF in a 15-year-old boy admitted with profound hypoproliferative anemia.

4.
Cell ; 147(7): 1473-83, 2011 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-22196725

RESUMO

Promoters are DNA elements that enable transcription and its regulation by trans-acting factors. Here, we demonstrate that yeast promoters can also regulate mRNA decay after the mRNA leaves the nucleus. A conventional yeast promoter consists of a core element and an upstream activating sequence (UAS). We find that changing UASs of a reporter gene without altering the transcript sequence affects the transcript's decay kinetics. A short cis element, comprising two Rap1p-binding sites, and Rap1p itself, are necessary and sufficient to induce enhanced decay of the reporter mRNA. Furthermore, Rap1p stimulates both the synthesis and the decay of a specific population of endogenous mRNAs. We propose that Rap1p association with target promoter in the nucleus affects the composition of the exported mRNP, which in turn regulates mRNA decay in the cytoplasm. Thus, promoters can play key roles in determining mRNA levels and have the capacity to coordinate rates of mRNA synthesis and decay.


Assuntos
Citoplasma/metabolismo , Regulação Fúngica da Expressão Gênica , Regiões Promotoras Genéticas , Estabilidade de RNA , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Ligação a Telômeros/metabolismo , Fatores de Transcrição/metabolismo , Ribonucleoproteínas/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Complexo Shelterina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA