Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 220
Filtrar
1.
Nat Commun ; 15(1): 3315, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38632311

RESUMO

This study investigates the humoral and cellular immune responses and health-related quality of life measures in individuals with mild to moderate long COVID (LC) compared to age and gender matched recovered COVID-19 controls (MC) over 24 months. LC participants show elevated nucleocapsid IgG levels at 3 months, and higher neutralizing capacity up to 8 months post-infection. Increased spike-specific and nucleocapsid-specific CD4+ T cells, PD-1, and TIM-3 expression on CD4+ and CD8+ T cells were observed at 3 and 8 months, but these differences do not persist at 24 months. Some LC participants had detectable IFN-γ and IFN-ß, that was attributed to reinfection and antigen re-exposure. Single-cell RNA sequencing at the 24 month timepoint shows similar immune cell proportions and reconstitution of naïve T and B cell subsets in LC and MC. No significant differences in exhaustion scores or antigen-specific T cell clones are observed. These findings suggest resolution of immune activation in LC and return to comparable immune responses between LC and MC over time. Improvement in self-reported health-related quality of life at 24 months was also evident in the majority of LC (62%). PTX3, CRP levels and platelet count are associated with improvements in health-related quality of life.


Assuntos
COVID-19 , Síndrome de COVID-19 Pós-Aguda , Humanos , Linfócitos T CD8-Positivos , Qualidade de Vida , SARS-CoV-2 , Anticorpos Antivirais
2.
Int J Mol Sci ; 25(5)2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38474018

RESUMO

Early gene therapy studies held great promise for the cure of heritable diseases, but the occurrence of various genotoxic events led to a pause in clinical trials and a more guarded approach to progress. Recent advances in genetic engineering technologies have reignited interest, leading to the approval of the first gene therapy product targeting genetic mutations in 2017. Gene therapy (GT) can be delivered either in vivo or ex vivo. An ex vivo approach to gene therapy is advantageous, as it allows for the characterization of the gene-modified cells and the selection of desired properties before patient administration. Autologous cells can also be used during this process which eliminates the possibility of immune rejection. This review highlights the various stages of ex vivo gene therapy, current research developments that have increased the efficiency and safety of this process, and a comprehensive summary of Human Immunodeficiency Virus (HIV) gene therapy studies, the majority of which have employed the ex vivo approach.


Assuntos
Infecções por HIV , HIV , Humanos , HIV/genética , Vetores Genéticos , Terapia Genética , Engenharia Genética , RNA
3.
Virus Res ; 341: 199310, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38185332

RESUMO

The Global UNAIDS 95/95/95 targets aim to increase the percentage of persons who know their HIV status, receive antiretroviral therapy, and have achieved viral suppression. Achieving these targets requires efforts to improve the public health response to increase access to care for those living with HIV, identify those yet undiagnosed with HIV early, and increase access to prevention for those most at risk of HIV acquisition. HIV infections in Australia are among the lowest globally having recorded significant declines in new diagnoses in the last decade. However, the HIV epidemic has changed with an increasing proportion of newly diagnosed infections among those born outside Australia observed in the last five years. Thus, the current prevention efforts are not enough to achieve the UNAIDS targets and virtual elimination across all population groups. We believe both are possible by including molecular epidemiology in the public health response. Molecular epidemiology methods have been crucial in the field of HIV prevention, particularly in demonstrating the efficacy of treatment as prevention. Cluster detection using molecular epidemiology can provide opportunities for the real-time detection of new outbreaks before they grow, and cluster detection programs are now part of the public health response in the USA and Canada. Here, we review what molecular epidemiology has taught us about HIV evolution and spread. We summarize how we can use this knowledge to improve public health measures by presenting case studies from the USA and Canada. We discuss the successes and challenges of current public health programs in Australia, and how we could use cluster detection as an add-on to identify gaps in current prevention measures easier and respond quicker to growing clusters. Lastly, we raise important ethical and legal challenges that need to be addressed when HIV genotypic data is used in combination with personal data.


Assuntos
Síndrome da Imunodeficiência Adquirida , Infecções por HIV , Humanos , Infecções por HIV/tratamento farmacológico , Infecções por HIV/epidemiologia , Infecções por HIV/prevenção & controle , Epidemiologia Molecular , HIV/genética , Austrália/epidemiologia
4.
J Infect Dis ; 229(4): 1229-1238, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37788578

RESUMO

Positron emission tomography-computed tomography (PET-CT) has the potential to revolutionize research in infectious diseases, as it has done with cancer. There is growing interest in it as a biomarker in the setting of early-phase tuberculosis clinical trials, particularly given the limitations of current biomarkers as adequate predictors of sterilizing cure for tuberculosis. PET-CT is a real-time tool that provides a 3-dimensional view of the spatial distribution of tuberculosis within the lung parenchyma and the nature of lesions with uptake (ie, whether nodular, consolidative, or cavitary). Its ability to provide functional data on changes in metabolism, drug penetration, and immune control of tuberculous lesions has the potential to facilitate drug development and regimen selection for advancement to phase 3 trials in tuberculosis. In this narrative review, we discuss the role that PET-CT may have in evaluating responses to drug therapy in active tuberculosis treatment and the challenges in taking PET-CT forward as predictive biomarker of relapse-free cure in the setting of phase 2 clinical trials.


Assuntos
Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Tuberculose , Humanos , Tuberculose/diagnóstico por imagem , Tuberculose/tratamento farmacológico , Tuberculose/metabolismo , Pulmão/patologia , Recidiva , Biomarcadores , Fluordesoxiglucose F18/uso terapêutico , Tomografia por Emissão de Pósitrons , Ensaios Clínicos Fase II como Assunto
5.
PLoS One ; 18(11): e0289907, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37910527

RESUMO

People with immunocompromising conditions are at increased risk of SARS-CoV-2 infection and mortality, however early in the pandemic it was challenging to collate data on this heterogenous population. We conducted a registry study of immunocompromised individuals with polymerase chain reaction (PCR)-confirmed SARS-CoV-2 infection from March-October 2020 in Sydney, Australia to understand clinical and laboratory outcomes in this population prior to the emergence of the Delta variant. 27 participants were enrolled into the study including people with a haematologic oncologic conditions (n = 12), secondary immunosuppression (N = 8) and those with primary or acquired immunodeficiency (i.e. HIV; N = 7). All participants had symptomatic COVID-19 with the most common features being cough (64%), fever (52%) and headache (40%). Five patients demonstrated delayed SARS-CoV-2 clearance lasting three weeks to three months. The mortality rate in this study was 7% compared to 1.3% in the state of New South Wales Australia during the same period. This study provides data from the first eight months of the pandemic on COVID-19 outcomes in at-risk patient groups.


Assuntos
COVID-19 , Humanos , COVID-19/epidemiologia , SARS-CoV-2 , Pandemias , Austrália/epidemiologia
6.
EJHaem ; 4(3): 728-732, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37601863

RESUMO

Patients with Waldenström macroglobulinaemia (WM) are at increased risk of severe COVID-19 infection and have poor immune responses to COVID-19 vaccination. This study assessed whether a closely monitored pause in Bruton's Tyrosine Kinase inhibitor (BTKi) therapy might result in an improved humoral response to a 3rd COVID-19 vaccine dose. Improved response was observed in WM patients who paused their BTKi, compared to a group who did not pause their BTKi. However, the response was attenuated after BTKi recommencement. This data contributes to our understanding of vaccination strategies in this patient group and may help inform consensus approaches in the future.

7.
Antiviral Res ; 217: 105677, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37478918

RESUMO

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is a respiratory virus that causes COVID-19 disease, with an estimated global mortality of approximately 2%. While global response strategies, which are predominantly reliant on regular vaccinations, have shifted from zero COVID to living with COVID, there is a distinct lack of broad-spectrum direct acting antiviral therapies that maintain efficacy across evolving SARS-CoV-2 variants of concern. This is of most concern for immunocompromised and immunosuppressed individuals who lack robust immune responses following vaccination, and others at risk for severe COVID and long-COVID. RNA interference (RNAi) therapeutics induced by short interfering RNAs (siRNAs) offer a promising antiviral treatment option, with broad-spectrum antiviral capabilities unparalleled by current antiviral therapeutics and a high genetic barrier to antiviral escape. Here we describe novel siRNAs, targeting highly conserved regions of the SARS-CoV-1 and 2 genome of both human and animal species, with multi-variant antiviral potency against eight SARS-CoV-2 lineages - Ancestral VIC01, Alpha, Beta, Gamma, Delta, Zeta, Kappa and Omicron. Treatment with our siRNA resulted in significant protection against virus-mediated cell death in vitro, with >97% cell survival (P < 0.0001), and corresponding reductions of viral nucleocapsid RNA of up to 99.9% (P < 0.0001). When compared to antivirals; Sotrovimab and Remdesivir, the siRNAs demonstrated a more potent antiviral effect and similarly, when multiplexing siRNAs to target different viral regions simultaneously, an increased antiviral effect was observed compared to individual siRNA treatments (P < 0.0001). These results demonstrate the potential for a highly effective broad-spectrum direct acting antiviral against multiple SARS-CoV-2 variants, including variants resistant to antivirals and vaccine generated neutralizing antibodies.


Assuntos
COVID-19 , Hepatite C Crônica , Animais , Humanos , RNA Interferente Pequeno/genética , SARS-CoV-2/genética , Antivirais/farmacologia , Antivirais/uso terapêutico , Síndrome de COVID-19 Pós-Aguda , COVID-19/terapia , Anticorpos Neutralizantes/uso terapêutico , Anticorpos Antivirais , Glicoproteína da Espícula de Coronavírus
8.
EBioMedicine ; 90: 104545, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37002990

RESUMO

BACKGROUND: The Omicron era of the COVID-19 pandemic commenced at the beginning of 2022 and whilst it started with primarily BA.1, it was latter dominated by BA.2 and the related sub-lineage BA.5. Following resolution of the global BA.5 wave, a diverse grouping of Omicron sub-lineages emerged derived from BA.2, BA.5 and recombinants thereof. Whilst emerging from distinct lineages, all shared similar changes in the Spike glycoprotein affording them an outgrowth advantage through evasion of neutralising antibodies. METHODS: Over the course of 2022, we monitored the potency and breadth of antibody neutralization responses to many emerging variants in the Australian community at three levels: (i) we tracked over 420,000 U.S. plasma donors over time through various vaccine booster roll outs and Omicron waves using sequentially collected IgG pools; (ii) we mapped the antibody response in individuals using blood from stringently curated vaccine and convalescent cohorts. (iii) finally we determine the in vitro efficacy of clinically approved therapies Evusheld and Sotrovimab. FINDINGS: In pooled IgG samples, we observed the maturation of neutralization breadth to Omicron variants over time through continuing vaccine and infection waves. Importantly, in many cases, we observed increased antibody breadth to variants that were yet to be in circulation. Determination of viral neutralization at the cohort level supported equivalent coverage across prior and emerging variants with isolates BQ.1.1, XBB.1, BR.2.1 and XBF the most evasive. Further, these emerging variants were resistant to Evusheld, whilst increasing neutralization resistance to Sotrovimab was restricted to BQ.1.1 and XBF. We conclude at this current point in time that dominant variants can evade antibodies at levels equivalent to their most evasive lineage counterparts but sustain an entry phenotype that continues to promote an additional outgrowth advantage. In Australia, BR.2.1 and XBF share this phenotype and, in contrast to global variants, are uniquely dominant in this region in the later months of 2022. INTERPRETATION: Whilst the appearance of a diverse range of omicron lineages has led to primary or partial resistance to clinically approved monoclonal antibodies, the maturation of the antibody response across both cohorts and a large donor pools importantly observes increasing breadth in the antibody neutralisation responses over time with a trajectory that covers both current and known emerging variants. FUNDING: This work was primarily supported by Australian Medical Foundation research grants MRF2005760 (SGT, GM & WDR), Medical Research Future Fund Antiviral Development Call grant (WDR), the New South Wales Health COVID-19 Research Grants Round 2 (SGT & FB) and the NSW Vaccine Infection and Immunology Collaborative (VIIM) (ALC). Variant modeling was supported by funding from SciLifeLab's Pandemic Laboratory Preparedness program to B.M. (VC-2022-0028) and by the European Union's Horizon 2020 research and innovation programme under grant agreement no. 101003653 (CoroNAb) to B.M.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Pandemias/prevenção & controle , COVID-19/prevenção & controle , Austrália/epidemiologia , Anticorpos Neutralizantes , Imunoglobulina G , Anticorpos Antivirais
9.
STAR Protoc ; 4(1): 102025, 2023 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-36853860

RESUMO

CD8+ T lymphocytes can recognize and eliminate cells infected by viruses. However, the human immunodeficiency virus (HIV-1) has developed mechanisms to evade CD8+ T-cell-mediated clearance. Here, we describe a protocol to assess the role of the HIV-1 protein Nef in immune evasion. The viral competition assay reveals the preferential killing of HIV-1-infected cells unable to express Nef. This methodology can be extended to study HIV-1 proteins involved in immune evasion and viral variants encoding cytotoxic T lymphocyte escape mutations. For complete details on the use and execution of this protocol, please refer to Duette et al. (2022).1.


Assuntos
HIV-1 , Evasão da Resposta Imune , Humanos , HIV-1/genética , HIV-1/metabolismo , Produtos do Gene nef do Vírus da Imunodeficiência Humana/genética , Produtos do Gene nef do Vírus da Imunodeficiência Humana/metabolismo , Linfócitos T CD8-Positivos , Linfócitos T Citotóxicos
10.
Mol Pharm ; 20(4): 2039-2052, 2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-36848493

RESUMO

For over two decades, nanomaterials have been employed to facilitate intracellular delivery of small interfering RNA (siRNA), both in vitro and in vivo, to induce post-transcriptional gene silencing (PTGS) via RNA interference. Besides PTGS, siRNAs are also capable of transcriptional gene silencing (TGS) or epigenetic silencing, which targets the gene promoter in the nucleus and prevents transcription via repressive epigenetic modifications. However, silencing efficiency is hampered by poor intracellular and nuclear delivery. Here, polyarginine-terminated multilayered particles are reported as a versatile system for the delivery of TGS-inducing siRNA to potently suppress virus transcription in HIV-infected cells. siRNA is complexed with multilayered particles formed by layer-by-layer assembly of poly(styrenesulfonate) and poly(arginine) and incubated with HIV-infected cell types, including primary cells. Using deconvolution microscopy, uptake of fluorescently labeled siRNA is observed in the nuclei of HIV-1 infected cells. Viral RNA and protein are measured to confirm functional virus silencing from siRNA delivered using particles 16 days post-treatment. This work extends conventional particle-enabled PTGS siRNA delivery to the TGS pathway and paves the way for future studies on particle-delivered siRNA for efficient TGS of various diseases and infections, including HIV.


Assuntos
Infecções por HIV , HIV-1 , Humanos , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , HIV-1/genética , HIV-1/metabolismo , Inativação Gênica , Interferência de RNA , Epigênese Genética/genética , Infecções por HIV/genética , Infecções por HIV/terapia
11.
Immunol Cell Biol ; 101(6): 504-513, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36825370

RESUMO

The worldwide rollout of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccinations in the last 2 years has produced a multitude of studies investigating T-cell responses in the peripheral blood and a limited number in secondary lymphoid tissues. As a key component to an effective immune response, vaccine-specific T follicular helper (Tfh) cells are localized in the draining lymph node (LN) and assist in the selection of highly specific B-cell clones for the production of neutralizing antibodies. While these cells have been noted in the blood as circulating Tfh (cTfh) cells, they are not often taken into consideration when examining effective CD4+ T-cell responses, particularly in immunocompromised groups. Furthermore, site-specific analyses in locations such as the LN have recently become an attractive area of investigation. This is mainly a result of improved sampling methods via ultrasound-guided fine-needle biopsy (FNB)/fine-needle aspiration (FNA), which are less invasive than LN excision and able to be performed longitudinally. While these studies have been undertaken in healthy individuals, data from immunocompromised groups are lacking. This review will focus on both Tfh and cTfh responses after SARS-CoV-2 vaccination in healthy and immunocompromised individuals. This area of investigation could identify key characteristics of a successful LN response required for the prevention of infection and viral clearance. This furthermore may highlight responses that could be fine-tuned to improve vaccine efficacy within immunocompromised groups that are at a risk of more severe disease.


Assuntos
COVID-19 , Linfócitos T Auxiliares-Indutores , Humanos , Adulto , Vacinas contra COVID-19 , SARS-CoV-2 , Células T Auxiliares Foliculares , COVID-19/prevenção & controle , Vacinação
12.
Am J Hematol ; 98(1): 131-139, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35607995

RESUMO

Patients with indolent lymphoma undertaking recurrent or continuous B cell suppression are at risk of severe COVID-19. Patients and healthy controls (HC; N = 13) received two doses of BNT162b2: follicular lymphoma (FL; N = 35) who were treatment naïve (TN; N = 11) or received immunochemotherapy (ICT; N = 23) and Waldenström's macroglobulinemia (WM; N = 37) including TN (N = 9), ICT (N = 14), or treated with Bruton's tyrosine kinase inhibitors (BTKi; N = 12). Anti-spike immunoglobulin G (IgG) was determined by a high-sensitivity flow-cytometric assay, in addition to live-virus neutralization. Antigen-specific T cells were identified by coexpression of CD69/CD137 and CD25/CD134 on T cells. A subgroup (N = 29) were assessed for third mRNA vaccine response, including omicron neutralization. One month after second BNT162b2, median anti-spike IgG mean fluorescence intensity (MFI) in FL ICT patients (9977) was 25-fold lower than TN (245 898) and HC (228 255, p = .0002 for both). Anti-spike IgG correlated with lymphocyte count (r = .63; p = .002), and time from treatment (r = .56; p = .007), on univariate analysis, but only with lymphocyte count on multivariate analysis (p = .03). In the WM cohort, median anti-spike IgG MFI in BTKi patients (39 039) was reduced compared to TN (220 645, p = .0008) and HC (p < .0001). Anti-spike IgG correlated with neutralization of the delta variant (r = .62, p < .0001). Median neutralization titer for WM BTKi (0) was lower than HC (40, p < .0001) for early-clade and delta. All cohorts had functional T cell responses. Median anti-spike IgG decreased 4-fold from second to third dose (p = .004). Only 5 of 29 poor initial responders assessed after third vaccination demonstrated seroconversion and improvement in neutralization activity, including to the omicron variant.


Assuntos
COVID-19 , Linfoma não Hodgkin , Humanos , Imunoglobulina G , SARS-CoV-2 , Vacina BNT162 , COVID-19/prevenção & controle , Linfócitos T , Anticorpos Antivirais , Anticorpos Neutralizantes , Vacinação
13.
Clin Immunol ; 246: 109209, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36539107

RESUMO

Children infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) develop less severe coronavirus disease 2019 (COVID-19) than adults. The mechanisms for the age-specific differences and the implications for infection-induced immunity are beginning to be uncovered. We show by longitudinal multimodal analysis that SARS-CoV-2 leaves a small footprint in the circulating T cell compartment in children with mild/asymptomatic COVID-19 compared to adult household contacts with the same disease severity who had more evidence of systemic T cell interferon activation, cytotoxicity and exhaustion. Children harbored diverse polyclonal SARS-CoV-2-specific naïve T cells whereas adults harbored clonally expanded SARS-CoV-2-specific memory T cells. A novel population of naïve interferon-activated T cells is expanded in acute COVID-19 and is recruited into the memory compartment during convalescence in adults but not children. This was associated with the development of robust CD4+ memory T cell responses in adults but not children. These data suggest that rapid clearance of SARS-CoV-2 in children may compromise their cellular immunity and ability to resist reinfection.


Assuntos
COVID-19 , Humanos , Adulto , SARS-CoV-2 , Linfócitos T CD4-Positivos , Imunidade Celular , Ativação Linfocitária , Anticorpos Antivirais
14.
Immunol Cell Biol ; 101(2): 171-178, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36346178

RESUMO

Activation induced marker (AIM) assays are being used increasingly to measure antigen-specific T-cell responses, but this activation can alter cell lineage defining phenotypic markers. We aimed to extend the utility of AIM assays to enable pre-activation defined cell populations to be tracked and quantified within T-cell memory responses. We sorted three ex vivo CD4+ T-cell populations prior to any activation using well defined ex vivo lineage surface marker combinations. These populations were memory non-Tregs, CD39+ Tregs and CD39neg Tregs, although any three memory CD4+ T-cell populations able to be isolated by cell surface markers could potentially be tracked. These cells were labeled with three distinct fluorescent cell proliferation dyes (CFSE, CellTrace Violet and Cell Proliferation Dye eF670) and then all autologous PBMCs were reconstituted maintaining ex vivo cell ratios and CD25/OX40 AIM assays performed with CMV and HSV antigens. This approach enabled tracking of pre-defined cell populations within antigen stimulated responses using both activation marker and cell proliferation readouts. We confirmed that although CD39+ Tregs comprise a substantial proportion of AIM assay responses, they do not make substantial contributions to the proliferative response. This extends the utility of AIM assays to enable parallel analysis of the relative contribution of several CD4+ memory T-cell subsets to recall responses.


Assuntos
Corantes , Linfócitos T Reguladores , Humanos , Corantes/metabolismo , Subpopulações de Linfócitos T , Linfócitos T CD4-Positivos , Antígenos/metabolismo , Proliferação de Células , Fatores de Transcrição Forkhead/metabolismo
15.
Front Immunol ; 13: 1032911, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36544780

RESUMO

Background: Long-term immunity to SARS-CoV-2 infection, including neutralizing antibodies and T cell-mediated immunity, is required in a very large majority of the population in order to reduce ongoing disease burden. Methods: We have investigated the association between memory CD4 and CD8 T cells and levels of neutralizing antibodies in convalescent COVID-19 subjects. Findings: Higher titres of convalescent neutralizing antibodies were associated with significantly higher levels of RBD-specific CD4 T cells, including specific memory cells that proliferated vigorously in vitro. Conversely, up to half of convalescent individuals had low neutralizing antibody titres together with a lack of receptor binding domain (RBD)-specific memory CD4 T cells. These low antibody subjects had other, non-RBD, spike-specific CD4 T cells, but with more of an inhibitory Foxp3+ and CTLA-4+ cell phenotype, in contrast to the effector T-bet+, cytotoxic granzymes+ and perforin+ cells seen in RBD-specific memory CD4 T cells from high antibody subjects. Single cell transcriptomics of antigen-specific CD4+ T cells from high antibody subjects similarly revealed heterogenous RBD-specific CD4+ T cells that comprised central memory, transitional memory and Tregs, as well as cytotoxic clusters containing diverse TCR repertoires, in individuals with high antibody levels. However, vaccination of low antibody convalescent individuals led to a slight but significant improvement in RBD-specific memory CD4 T cells and increased neutralizing antibody titres. Interpretation: Our results suggest that targeting CD4 T cell epitopes proximal to and within the RBD-region should be prioritized in booster vaccines.


Assuntos
Linfócitos T CD4-Positivos , COVID-19 , Humanos , SARS-CoV-2 , Anticorpos Neutralizantes , Epitopos de Linfócito T
16.
Front Immunol ; 13: 983550, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36211412

RESUMO

The current COVID-19 pandemic has highlighted a need to further understand lung mucosal immunity to reduce the burden of community acquired pneumonia, including that caused by the SARS-CoV-2 virus. Local mucosal immunity provides the first line of defence against respiratory pathogens, however very little is known about the mechanisms involved, with a majority of literature on respiratory infections based on the examination of peripheral blood. The mortality for severe community acquired pneumonia has been rising annually, even prior to the current pandemic, highlighting a significant need to increase knowledge, understanding and research in this field. In this review we profile key mediators of lung mucosal immunity, the dysfunction that occurs in the diseased lung microenvironment including the imbalance of inflammatory mediators and dysbiosis of the local microbiome. A greater understanding of lung tissue-based immunity may lead to improved diagnostic and prognostic procedures and novel treatment strategies aimed at reducing the disease burden of community acquired pneumonia, avoiding the systemic manifestations of infection and excess morbidity and mortality.


Assuntos
COVID-19 , Infecções Comunitárias Adquiridas , Humanos , Imunidade nas Mucosas , Mediadores da Inflamação , Pandemias , SARS-CoV-2
17.
Clin Exp Immunol ; 210(2): 163-174, 2022 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-36053502

RESUMO

Natural killer (NK) cells are important anti-viral effector cells. The function and phenotype of the NK cells that constitute an individual's NK cell repertoire can be influenced by ongoing or previous viral infections. Indeed, infection with human cytomegalovirus (HCMV) drives the expansion of a highly differentiated NK cell population characterized by expression of CD57 and the activating NKG2C receptor. This NK cell population has also been noted to occur in HIV-1-infected individuals. We evaluated the NK cells of HIV-1-infected and HIV-1-uninfected individuals to determine the relative frequency of highly differentiated CD57+NKG2C+ NK cells and characterize these cells for their receptor expression and responsiveness to diverse stimuli. Highly differentiated CD57+NKG2C+ NK cells occurred at higher frequencies in HCMV-infected donors relative to HCMV-uninfected donors and were dramatically expanded in HIV-1/HCMV co-infected donors. The expanded CD57+NKG2C+ NK cell population in HIV-1-infected donors remained stable following antiretroviral therapy. CD57+NKG2C+ NK cells derived from HIV-1-infected individuals were robustly activated by antibody-dependent stimuli that contained anti-HIV-1 antibodies or therapeutic anti-CD20 antibody, and these NK cells mediated cytolysis through NKG2C. Lastly, CD57+NKG2C+ NK cells from HIV-1-infected donors were characterized by reduced expression of the inhibitory NKG2A receptor. The abundance of highly functional CD57+NKG2C+ NK cells in HIV-1-infected individuals raises the possibility that these NK cells could play a role in HIV-1 pathogenesis or serve as effector cells for therapeutic/cure strategies.


Assuntos
Infecções por HIV , Células Matadoras Naturais , Humanos , HIV-1 , Subfamília C de Receptores Semelhantes a Lectina de Células NK , Fenótipo , Infecções por HIV/imunologia
18.
EBioMedicine ; 84: 104270, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36130476

RESUMO

BACKGROUND: Genetically distinct viral variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have been recorded since January 2020. The introduction of global vaccine programs has contributed to lower COVID-19 hospitalisation and mortality rates, particularly in developed countries. In late 2021, Omicron BA.1 emerged, with substantially altered genetic differences and clinical effects from other variants of concern. Shortly after dominating global spread in early 2022, BA.1 was supplanted by the genetically distinct Omicron lineage BA.2. A sub-lineage of BA.2, designated BA.5, presently has an outgrowth advantage over BA.2 and other BA.2 sub-lineages. Here we study the neutralisation of Omicron BA.1, BA.2 and BA.5 and pre-Omicron variants using a range of vaccine and convalescent sera and therapeutic monoclonal antibodies using a live virus neutralisation assay. Using primary nasopharyngeal swabs, we also tested the relative fitness of BA.5 compared to pre-Omicron and Omicron viral lineages in their ability to use the ACE2-TMPRSS2 pathway. METHODS: Using low passage clinical isolates of Clade A.2.2, Beta, Delta, BA.1, BA.2 and BA.5, we determined humoral neutralisation in vitro in vaccinated and convalescent cohorts, using concentrated human IgG pooled from thousands of plasma donors, and licensed monoclonal antibody therapies. We then determined infectivity to particle ratios in primary nasopharyngeal samples and expanded low passage isolates in a genetically engineered ACE2/TMPRSS2 cell line in the presence and absence of the TMPRSS2 inhibitor Nafamostat. FINDINGS: Peak responses to 3 doses of BNT162b2 vaccine were associated with a 9-fold reduction in neutralisation for Omicron lineages BA.1, BA.2 and BA.5. Concentrated pooled human IgG from convalescent and vaccinated donors and BNT162b2 vaccination with BA.1 breakthrough infections were associated with greater breadth of neutralisation, although the potency was still reduced 7-fold across all Omicron lineages. Testing of clinical grade antibodies revealed a 14.3-fold reduction using Evusheld and 16.8-fold reduction using Sotrovimab for the BA.5. Whilst the infectivity of BA.1 and BA.2 was attenuated in ACE2/TMPRSS2 entry, BA.5 was observed to be equivalent to that of an early 2020 circulating clade and had greater sensitivity to the TMPRSS2 inhibitor Nafamostat. INTERPRETATION: Observations support all Omicron variants to significantly escape neutralising antibodies across a range of vaccination and/or convalescent responses. Potency of therapeutic monoclonal antibodies is also reduced and differs across Omicron lineages. The key difference of BA.5 from other Omicron sub-variants is the reversion in tropism back to using the well-known ACE2-TMPRSS2 pathway, utilised efficiently by pre-Omicron lineages. Monitoring if these changes influence transmission and/or disease severity will be key for ongoing tracking and management of Omicron waves globally. FUNDING: This work was primarily supported by Australian Medical Foundation research grants MRF2005760 (ST, GM & WDR), MRF2001684 (ADK and ST) and Medical Research Future Fund Antiviral Development Call grant (WDR), Medical Research Future Fund COVID-19 grant (MRFF2001684, ADK & SGT) and the New South Wales Health COVID-19 Research Grants Round 2 (SGT).


Assuntos
COVID-19 , SARS-CoV-2 , Enzima de Conversão de Angiotensina 2/genética , Anticorpos Monoclonais Humanizados , Anticorpos Neutralizantes , Anticorpos Antivirais/metabolismo , Antivirais , Austrália , Vacina BNT162 , Benzamidinas , COVID-19/terapia , Guanidinas , Humanos , Imunização Passiva , Imunoglobulina G , Imunoterapia , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo , Tropismo , Soroterapia para COVID-19
19.
Pharmaceutics ; 14(7)2022 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-35890248

RESUMO

Our understanding of HIV infection has greatly advanced since the discovery of the virus in 1983. Treatment options have improved the quality of life of people living with HIV/AIDS, turning it from a fatal disease into a chronic, manageable infection. Despite all this progress, a cure remains elusive. A major barrier to attaining an HIV cure is the presence of the latent viral reservoir, which is established early in infection and persists for the lifetime of the host, even during prolonged anti-viral therapy. Different cure strategies are currently being explored to eliminate or suppress this reservoir. Several studies have shown that a functional cure may be achieved by preventing infection and also inhibiting reactivation of the virus from the latent reservoir. Here, we briefly describe the main HIV cure strategies, focussing on the use of RNA therapeutics, including small interfering RNA (siRNA) to maintain HIV permanently in a state of super latency, and CRISPR gRNA to excise the latent reservoir. A challenge with progressing RNA therapeutics to the clinic is achieving effective delivery into the host cell. This review covers recent nanotechnological strategies for siRNA delivery using liposomes, N-acetylgalactosamine conjugation, inorganic nanoparticles and polymer-based nanocapsules. We further discuss the opportunities and challenges of those strategies for HIV treatment.

20.
Curr Opin Immunol ; 76: 102186, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35567953

RESUMO

Despite successful viral suppression with antiretroviral therapy, chronic HIV-1 infection is associated with ongoing immune dysfunction. Investigation of the complex immune response in treated and untreated individuals with chronic HIV-1 infection is warranted. Immune alterations such as monocyte phenotype and Th-17/Treg ratios often persist years after the reduction in viraemia and predispose many individuals to long-term comorbidities such as cardiovascular disease or cancer. Furthermore, while there has been extensive research on the latent reservoir of treated patients with chronic HIV-1, which prevents the discontinuation of treatment, the mechanism behind this remains elusive and needs further investigation. In this review, we assist in navigating the recent research on these groups of individuals and provide a basis for further investigation.


Assuntos
Infecções por HIV , HIV-1 , Linfócitos T CD4-Positivos , Infecções por HIV/tratamento farmacológico , Humanos , Monócitos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...