Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
BMC Cardiovasc Disord ; 6: 8, 2006 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-16509993

RESUMO

BACKGROUND: Gender influences the cardiac response to prolonged increases in workload, with differences at structural, functional, and molecular levels. However, it is unknown if post-ischemic function or metabolism of female hypertrophied hearts differ from male hypertrophied hearts. Thus, we tested the hypothesis that gender influences post-ischemic function of pressure-overload hypertrophied hearts and determined if the effect of gender on post-ischemic outcome could be explained by differences in metabolism, especially the catabolic fate of glucose. METHODS: Function and metabolism of isolated working hearts from sham-operated and aortic-constricted male and female Sprague-Dawley rats before and after 20 min of no-flow ischemia (N = 17 to 27 per group) were compared. Parallel series of hearts were perfused with Krebs-Henseleit solution containing 5.5 mM [5-3H/U-14C]-glucose, 1.2 mM [1-14C]-palmitate, 0.5 mM [U-14C]-lactate, and 100 mU/L insulin to measure glycolysis and glucose oxidation in one series and oxidation of palmitate and lactate in the second. Statistical analysis was performed using two-way analysis of variance. The sequential rejective Bonferroni procedure was used to correct for multiple comparisons and tests. RESULTS: Female gender negatively influenced post-ischemic function of non-hypertrophied hearts, but did not significantly influence function of hypertrophied hearts after ischemia such that mass-corrected hypertrophied heart function did not differ between genders. Before ischemia, glycolysis was accelerated in hypertrophied hearts, but to a greater extent in males, and did not differ between male and female non-hypertrophied hearts. Glycolysis fell in all groups after ischemia, except in non-hypertrophied female hearts, with the reduction in glycolysis after ischemia being greatest in males. Post-ischemic glycolytic rates were, therefore, similarly accelerated in hypertrophied male and female hearts and higher in female than male non-hypertrophied hearts. Glucose oxidation was lower in female than male hearts and was unaffected by hypertrophy or ischemia. Consequently, non-oxidative catabolism of glucose after ischemia was lowest in male non-hypertrophied hearts and comparably elevated in hypertrophied hearts of both sexes. These differences in non-oxidative glucose catabolism were inversely related to post-ischemic functional recovery. CONCLUSION: Gender does not significantly influence post-ischemic function of hypertrophied hearts, even though female sex is detrimental to post-ischemic function in non-hypertrophied hearts. Differences in glucose catabolism may contribute to hypertrophy-induced and gender-related differences in post-ischemic function.


Assuntos
Cardiomegalia/fisiopatologia , Coração/fisiopatologia , Isquemia Miocárdica/fisiopatologia , Animais , Feminino , Glucose/metabolismo , Glicólise , Masculino , Oxirredução , Ratos , Ratos Sprague-Dawley , Fatores Sexuais
2.
J Muscle Res Cell Motil ; 27(1): 1-8, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16362724

RESUMO

Transforming growth factor-beta1 (TGF-beta1) is known to be expressed in the environment of developing fast muscle fibres during ontogenesis. In the present study, we have examined effects of administration of either TGF-beta1 or neutralizing TGF-beta1 antibody on the induction of fast type phenotype in regenerating skeletal muscles in rats. Expressions of fast and slow myosin heavy chain (MHC) isoforms were studied using protein electrophoresis, at 3 and 6 weeks after myotoxic treatment. Muscle contractile properties were also measured in situ. The results have shown that a single injection of TGF-beta1 into the regenerating slow soleus muscle increased the expression of fast MHC-2x/d and MHC-2a and decreases that of slow MHC-1 (P<0.05). Moreover, it reduced the degree of tetanic fusion during contraction (P<0.05). Conversely, injection of neutralizing antibody against TGF-beta1 into the regenerating fast EDL muscle increased the expression of MHC-2a and MHC-1 (P<0.05). In conclusion, when the slow muscle was regenerating in the presence of an increased level of TGF-beta1, it induced a shift to a less slow MHC phenotype and contractile characteristics. Conversely, neutralization of TGF-beta1 in the regenerating fast muscle induced a shift to a less fast MHC expression. Together these results suggest that TGF-beta1 influences some aspects of fast muscle-type patterning during skeletal muscle regeneration.


Assuntos
Contração Muscular/fisiologia , Fibras Musculares de Contração Rápida/metabolismo , Músculo Esquelético/metabolismo , Regeneração/fisiologia , Fator de Crescimento Transformador beta1/fisiologia , Animais , Anticorpos/farmacologia , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/fisiologia , Masculino , Contração Muscular/efeitos dos fármacos , Fibras Musculares de Contração Rápida/citologia , Fibras Musculares de Contração Rápida/efeitos dos fármacos , Músculo Esquelético/citologia , Músculo Esquelético/efeitos dos fármacos , Cadeias Pesadas de Miosina/efeitos dos fármacos , Cadeias Pesadas de Miosina/metabolismo , Fenótipo , Isoformas de Proteínas/efeitos dos fármacos , Isoformas de Proteínas/metabolismo , Ratos , Ratos Wistar , Regeneração/efeitos dos fármacos , Células Satélites de Músculo Esquelético/efeitos dos fármacos , Células Satélites de Músculo Esquelético/metabolismo , Toxinas Biológicas/farmacologia , Fator de Crescimento Transformador beta1/antagonistas & inibidores , Fator de Crescimento Transformador beta1/farmacologia , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/fisiologia
3.
Am J Physiol Heart Circ Physiol ; 287(3): H1055-63, 2004 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15105170

RESUMO

Adaptation of myocardial energy substrate utilization may contribute to the cardioprotective effects of regular exercise, a possibility supported by evidence showing that pharmacological metabolic modulation is beneficial to ischemic hearts during reperfusion. Thus we tested the hypothesis that the beneficial effect of regular physical exercise on recovery from ischemia-reperfusion is associated with a protective metabolic phenotype. Function, glycolysis, and oxidation of glucose, lactate, and palmitate were measured in isolated working hearts from sedentary control (C) and treadmill-trained (T: 10 wk, 4 days/wk) female Sprague-Dawley rats submitted to 20 min ischemia and 40 min reperfusion. Training resulted in myocardial hypertrophy (1.65 +/- 0.05 vs. 1.30 +/- 0.03 g heart wet wt, P < 0.001) and improved recovery of function after ischemia by nearly 50% (P < 0.05). Glycolysis was 25-30% lower in T hearts before and after ischemia (P < 0.05), whereas rates of glucose oxidation were 45% higher before ischemia (P < 0.01). As a result, the fraction of glucose oxidized before and after ischemia was, respectively, twofold and 25% greater in T hearts (P < 0.05). Palmitate oxidation was 50-65% greater in T than in C before and after ischemia (P < 0.05), whereas lactate oxidation did not differ between groups. Alteration in content of selected enzymes and proteins, as assessed by immunoblot analysis, could not account for the reduction in glycolysis or increase in glucose and palmitate oxidation observed. Combined with the studies on the beneficial effect of pharmacological modulation of energy metabolism, the present results provide support for a role of metabolic adaptations in protecting the trained heart against ischemia-reperfusion injury.


Assuntos
Metabolismo Energético , Isquemia Miocárdica/fisiopatologia , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Miocárdio/metabolismo , Condicionamento Físico Animal , Animais , Enzimas/metabolismo , Ácidos Graxos/metabolismo , Feminino , Glucose/metabolismo , Técnicas In Vitro , Fenótipo , Proteínas/metabolismo , Prótons , Ratos , Ratos Sprague-Dawley , Recuperação de Função Fisiológica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...