Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 59(11): 7408-7414, 2020 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-32431149

RESUMO

Na-ion batteries are emerging alternatives to Li-ion chemistries for large-scale energy storage applications. Quaternary layered oxide Na0.76Mn0.5Ni0.3Fe0.1Mg0.1O2 offers outstanding electrochemical performance in Na-ion batteries compared to pure-phase layered oxides because of the synergistic effect of the P/O-phase mixing. The material is indeed constituted by a mixture of P3, P2, and O3 phases, and a newly identified Na-free phase, i.e., nickel magnesium oxide phase, which improves heat removal and enhances the electrochemical performance. Herein, we structurally investigate, through synchrotron-radiation X-ray diffraction, the modifications occurring after full desodiation, detailing the material structural rearrangement upon Na removal and revealing the effect of two different charging protocols, i.e., constant current (CC) and constant current-constant voltage (CCCV). While the Na-free phase is electrochemically inactive, likely helping in homogenization of the thermal gradient in the electrode during cycling, O-P intergrown phases appear during the extraction of Na ions from interslab layers, and they are dependent on the desodiation level. The application of a constant voltage step at the end of the galvanostatic charge is responsible for a shortening of the interslab distance and a significant volume contraction (-11.9%).

2.
Adv Energy Mater ; 6(3): 1501555, 2016 02.
Artigo em Inglês | MEDLINE | ID: mdl-27134617

RESUMO

Herein, the synthesis of new quaternary layered Na-based oxides of the type Na x Mn y Ni z Fe0.1Mg0.1O2 (0.67≤ x ≤ 1.0; 0.5≤ y ≤ 0.7; 0.1≤ z ≤ 0.3) is described. The synthesis can be tuned to obtain P2- and O3-type as well as mixed P-/O-type phases as demonstrated by structural, morphological, and electrochemical properties characterization. Although all materials show good electrochemical performance, the simultaneous presence of the P- and O-type phases is found to have a synergetic effect resulting in outstanding performance of the mixed phase material as a sodium-ion cathode. The mixed P3/P2/O3-type material, having an average elemental composition of Na0.76Mn0.5Ni0.3Fe0.1Mg0.1O2, overcomes the specific drawbacks associated with the P2- and O3-type materials, allowing the outstanding electrochemical performance. In detail, the mixed phase material is able to deliver specific discharge capacities of up to 155 mAh g-1 (18 mA g-1) in the potential range of 2.0-4.3 V. In the narrower potential range of 2.5-4.3 V the material exhibits high average discharge potential (3.4 V versus Na/Na+), exceptional average coulombic efficiencies (>99.9%), and extraordinary capacity retention (90.2% after 601 cycles). The unexplored class of P-/O-type mixed phases introduces new perspectives for the development of layered positive electrode materials and powerful Na-ion batteries.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...