Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anal Methods ; 16(24): 3859-3866, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38847307

RESUMO

Methanol is a toxic alcohol contained in alcoholic beverages as a natural byproduct of fermentation or added intentionally to counterfeits to increase profit. To ensure consumer safety, many countries and the EU have established strict legislation limits for methanol content. Methanol concentration is mostly detected by laboratory instrumentation since mobile devices for routine on-site testing of beverages in distilleries, at border stations or even at home are not available. Here, we validated a handheld methanol detector for beverage analysis in an ISO 5725 interlaboratory trial: a total of 119 measurements were performed by 17 independent participants (distilleries, universities, authorities, and competence centers) from six countries on samples with relevant methanol concentrations (0.1, 1.5 vol%). The detector was based on a microporous separation filter and a nanostructured gas sensor allowing on-site measurement of methanol down to 0.01 vol% (in the liquid) within only 2 min by laymen. The detector showed excellent repeatability (<5.4%), reproducibility (<9.5%) and small bias (<0.012 vol%). Additional measurements on various methanol-spiked alcoholic beverages (whisky, rum, gin, vodka, tequila, port, sherry, liqueur) indicated that the detector is not interfered by environmental temperature and spirit composition, featuring excellent linearity (R2 > 0.99) down to methanol concentrations of 0.01 vol%. This device has been recently commercialized (Alivion Spark M-20) with comparable accuracy to the gold-standard gas chromatography and can be readily applied for final product inspection, intake control of raw materials or to identify toxic counterfeit products.


Assuntos
Bebidas Alcoólicas , Metanol , Metanol/análise , Bebidas Alcoólicas/análise , Reprodutibilidade dos Testes , Análise de Alimentos/instrumentação , Análise de Alimentos/métodos , Laboratórios/normas
2.
Mikrochim Acta ; 187(1): 96, 2020 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-31907635

RESUMO

Palladium is used commonly to enhance the performance of chemoresistive metal-oxide gas sensors. Typically, this enhancement is attributed to the presence of Pd clusters on the surface of their metal-oxide support (i.e. SnO2). Possible Pd incorporation or embedding into the support rarely has been considered. Here, SnO2 particles (15 - 21 nm in diameter measured by N2 adsorption) with different Pd contents (0 - 3 mol%) were prepared by flame spray pyrolysis (FSP). Leaching these particles with HNO3 and characterization by inductively coupled plasma - optical emission spectrometry (ICP-OES) indicated that only 36 - 60% of Pd have been removed (e.g., from the SnO2 surface). The rest was embedded within the SnO2 particles. Annealing prior to leaching decreased by ~30% that Pd surface content. Most interestingly, such SnO2 particles (with only embedded Pd) show higher sensor response to acetone, ethanol and CO at 350 °C compared to SnO2 particles containing both surface and embedded Pd (i.e. before leaching). As a result, such sensors can detect acetone with high (> 25) signal-to-noise ratio at levels down to 5 ppb at 50% relative humidity. Graphical abstractFlame-made SnO2 nanoparticles with embedded and surface Pd (triangles) exhibit lower sensor response to acetone, ethanol and CO than SnO2 from which the surface Pd had been removed by leaching (circles).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...