Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Food Prot ; 85(3): 398-405, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-34855937

RESUMO

ABSTRACT: Salmonella enterica is well known for its ability to survive and persist in low-moisture environments. Previous studies have indicated a link between the initial cell level and the population of Salmonella that survives after desiccation and subsequent storage; however, how the initial cell concentration affects survival is unknown. This study was conducted to examine this phenomenon and to determine whether it occurs in other microorganisms, specifically Shiga toxigenic Escherichia coli (STEC) and Enterococcus faecium. Salmonella, STEC, and E. faecium were grown as sessile cells on Trypticase soy agar with yeast extract (TSAYE) and harvested in buffered peptone water (BPW). To determine recovery at different initial cell levels, cultures were diluted to 9, 7, and 5 log CFU/mL and applied to filters. Filters were dried for 24 h and then stored for 28 days at 25°C and 33% relative humidity. During storage, cells were recovered from filters with BPW and cultivated on TSAYE. Recovery of both Salmonella and E. coli, but not E. faecium, was nonproportional. Lower initial populations were less viable after 24 h of desiccation; ≥10 log CFU/mL was recovered when 11 log CFU/mL was desiccated, but <3 log CFU/mL was recovered when 5 log CFU/mL was desiccated. Once dried, persistence did not appear affected by initial cell concentration. When inactivated (heat-treated) cells were added to the diluent, recovery of Salmonella was proportional with respect to the initial cell level. To further examine the response to desiccation, Salmonella was diluted in BPW containing 1 of 11 test cell components related to quorum sensing or known to affect desiccation resistance to assess recovery and persistence. Of the 11 additions, only cell debris fractions, cell-free extract, and peptidoglycan improved recovery of Salmonella. Desiccation survival appears related to cell wall components; however, the exact mechanism affecting survival remains unknown.


Assuntos
Enterococcus faecium , Salmonella enterica , Escherichia coli Shiga Toxigênica , Contagem de Colônia Microbiana , Dessecação , Microbiologia de Alimentos
2.
J Food Prot ; 85(2): 231-237, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34614182

RESUMO

ABSTRACT: Salmonella contamination in a dry processing facility frequently requires removal methods that are nonaqueous. Removal of pathogens from food processing systems with a purge of uncontaminated dry food materials has been proposed; however, little is known with respect to efficacy. In this study, survival of Salmonella on inert contact surfaces and transfer of Salmonella from inert contact surfaces to low-moisture foods were evaluated. Six stainless steel and polymeric food contact material types, in bead form, were contaminated at 11 log CFU/mL and then stored at two temperatures, 25 and 4°C, for 6 months. Simultaneously, three dry food materials or ingredients were used to remove Salmonella from contaminated beads. Wheat flour, cornmeal, and NaCl (1 g each) were mechanically mixed with 3 beads of each material type. The rate of microbial transfer from contaminated beads to food materials was measured. Further experimentation using multiple transfers was applied on two representative beads types, 316 stainless steel and polypropylene, representing common surface contact materials used in processing equipment. Survival of Salmonella on beads depended on storage temperature, with longer survival (P < 0.05) at 4°C than at 25°C, but survival was not influenced by type of bead material. Transfer of Salmonella from stainless steel beads to flour was significantly greater (P < 0.05) than from plastic. Transfer rates from stainless steel to wheat flour, cornmeal, and NaCl were measured as -0.5713, -0.2592, and -1.4221 log CFU of Salmonella removed per cm2 per g of clean material used. Transfer rates from polypropylene to whole wheat flour, cornmeal, and NaCl were more than 10-fold lower at -0.0156, -0.0148, and -0.0129 log CFU of Salmonella removed per cm2 per g of clean material used. These results indicate that although material type may not influence Salmonella survival during storage, Salmonella is more easily removed from stainless steel than polypropylene.


Assuntos
Farinha , Cloreto de Sódio , Aderência Bacteriana , Contagem de Colônia Microbiana , Manipulação de Alimentos , Microbiologia de Alimentos , Salmonella , Cloreto de Sódio/farmacologia , Aço Inoxidável , Triticum
3.
J Food Prot ; 84(8): 1380-1384, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-33852728

RESUMO

ABSTRACT: Growth on solid media as sessile cells is believed to increase the desiccation tolerance of Salmonella enterica. However, the reasons behind increased resistance have not been well explored. In addition, the same effect has not been examined for other foodborne pathogens such as pathogenic Escherichia coli or Listeria monocytogenes. The purpose of this research was twofold: first, to determine the role of oxygenation during growth on the desiccation resistance of S. enterica, E. coli, and L. monocytogenes, and second, to determine the effect of sessile versus planktonic growth on the desiccation resistance of these pathogens. Three different serotypes each of Salmonella, E. coli, and L. monocytogenes were cultured in Trypticase soy broth with 0.6% yeast extract (TSBYE), with (aerobic) shaking or on TSBYE with agar under either aerobic or anaerobic conditions and harvested in the stationary phase. After adding cell suspensions to cellulose filter disks, pathogen survival was determined by enumeration before drying (0 h) and after drying for 24 h. Results showed statistical differences in harvested initial populations before drying. For Salmonella, a correlation was found between high initial population and greater survival on desiccation (P = 0.05). In addition, statistical differences (P ≤ 0.05) between survival based on growth type were identified. However, differences found were not the same for the three pathogens, or between their serotypes. In general, Salmonella and E. coli desiccation resistance followed the pattern of aerobic agar media ≥ liquid media ≥ anaerobic agar media. For L. monocytogenes serotypes, resistance to desiccation was not statistically different based on mode of growth. These results indicate growth on solid media under aerobic conditions is not always necessary for optimal desiccation survival, but may be beneficial when the desiccation resistance of the test serotype is unknown.


Assuntos
Escherichia coli O157 , Listeria monocytogenes , Salmonella enterica , Contagem de Colônia Microbiana , Dessecação , Microbiologia de Alimentos
4.
J Food Prot ; 83(5): 902-909, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32032418

RESUMO

ABSTRACT: Dehydrated fruits, including dried coconut (Cocos nucifera) and dried apple (Malus sp.) slices, have been the subject of manufacturer recalls due to contamination with Salmonella. A study was conducted to determine the survival of Salmonella on apple slices of six apple cultivars after dehydration and also following treatment with antimicrobial solutions (0.5%, w/w) and dehydration. Samples of six apple cultivars (Envy, Gala, Red Delicious, Fuji, Pink Lady, Granny Smith) were cored and sliced into 0.4-cm rings, halved, inoculated with a five-strain composite of desiccation-resistant Salmonella, and dehydrated at 60°C for 5 h. Subsequently, Gala apple slices were treated in 0.5% solutions of one of eight antimicrobial rinses for 2 min and then dehydrated at 60°C for 5 h. Antimicrobial solutions used were potassium sorbate, sodium benzoate, ascorbic acid, propionic acid, lactic acid, citric acid, fumaric acid, and sodium bisulfate. Reduction of Salmonella populations varied according to apple cultivar. Salmonella survival on Envy, Gala, Red Delicious, Fuji, Pink Lady, and Granny Smith was 5.92, 5.58, 4.83, 4.68, 4.45, and 3.84 log CFU, respectively. There was significantly greater (P < 0.05) Salmonella inactivation on Granny Smith, Pink Lady, and Fuji apples than on Gala and Envy. Survival of Salmonella on Gala apple slices following dehydration was 5.58 log CFU for the untreated control and 4.76, 3.90, 3.29, 3.13, 2.89, 2.83, 2.64, and 0.0 log CFU for those treated with potassium sorbate, sodium benzoate, ascorbic acid, propionic acid, lactic acid, citric acid, fumaric acid, and sodium bisulfate, respectively. Pretreatment of apple slices with either fumaric acid or sodium bisulfate before dehydration led to lower Salmonella survival than pretreatment with all other antimicrobial treatments. Lower apple pH was statistically correlated (P < 0.05) with decreasing survival of Salmonella following dehydration. These results may provide methodology applicable to the food industry for increasing the inactivation of Salmonella during the dehydration of apple slices.


Assuntos
Desinfetantes/farmacologia , Manipulação de Alimentos/métodos , Microbiologia de Alimentos , Malus , Salmonella/crescimento & desenvolvimento , Contagem de Colônia Microbiana , Dessecação , Humanos , Malus/classificação , Malus/microbiologia
5.
J Food Prot ; 83(2): 211-220, 2020 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-31928357

RESUMO

ABSTRACT: One intrinsic characteristic of low-moisture foods that is frequently overlooked is pH. Although pH affects the survival of microorganisms in high-moisture foods, its influence in low-moisture foods with less available moisture has not been examined. Escherichia coli O157:H7, E. coli O121, Salmonella enterica Anatum, and S. enterica Agona were grown on solid media with and without added glucose, harvested, and then suspended in buffer at pH 4, 5, and 7 for 10 min. All cultures were spotted individually onto cellulose filters and dried in a biohazard cabinet (23 ± 2°C) overnight (24 ± 2 h) and then stored in a 25°C incubator at 33% relative humidity. Populations were examined at regular intervals up to 26 (E. coli) or 29 (Salmonella) days. Additional controls for pH consisted of cultures held in buffer at pH 4, 5, and 7 at 25°C for the same time periods as the desiccated cells. For all strains tested, pH had an effect on survival whether stored dried or in liquid buffer (P < 0.05). However, when grown on solid media, acid adaptation (grown with glucose) before acid treatment did not appear beneficial to Salmonella during desiccation. Instead, both acid-adapted Salmonella serovars appeared less resistant during drying than did non-acid-adapted cells. Once dried, the rates of decline for Salmonella were not significantly different for acid-adapted and nonadapted cells (P > 0.05), indicating similar persistence following desiccation. A reverse trend was observed for E. coli O121; acid adaptation on solid media improved survival during desiccation and subsequent storage at low pH (P < 0.05). E. coli O157:H7 survival was significantly lower than that of either Salmonella or E. coli O121 under all conditions tested. Results indicate that the response to desiccation and pH stress differs between the microorganisms and under different growth conditions.

6.
J Food Prot ; 82(8): 1308-1313, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31310172

RESUMO

Non-O157 Shiga toxin-producing Escherichia coli infections have recently been associated with wheat flour on two separate accounts in the United States and Canada. However, there is little information regarding the thermal resistance and longevity of non-O157 Shiga toxin-producing Escherichia coli during storage in low-moisture environments. The objectives of this study were to determine the thermal inactivation kinetics of E. coli O121 in wheat flour and to compare the thermal inactivation rates with those of other pathogens. Wheat flour, inoculated with E. coli O121, was equilibrated at 25°C to a water activity of 0.45 in a humidity-controlled conditioning chamber. Inoculated samples were treated isothermally at 70, 75, and 80°C, and posttreatment population survivor ratios were determined by plate counting. D- and z-values calculated with a log-linear model, were compared with those obtained in other studies. At 70, 75, and 80°C, the D-values for E. coli O121 were 18.16 ± 0.96, 6.47 ± 0.50, and 4.58 ± 0.40 min, respectively, and the z-value was 14.57 ± 2.21°C. Overall, E. coli O121 was observed to be slightly less thermally resistant than what has been previously reported for Salmonella Enteritidis PT30 in wheat flour as measured under the same conditions with the same methods.


Assuntos
Dessecação , Farinha , Microbiologia de Alimentos , Temperatura Alta , Escherichia coli Shiga Toxigênica , Canadá , Contagem de Colônia Microbiana , Farinha/microbiologia , Escherichia coli Shiga Toxigênica/isolamento & purificação , Triticum/microbiologia
7.
J Food Prot ; 82(6): 988-996, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31121101

RESUMO

There are numerous obstacles to the detection of foodborne pathogens in foods that exhibit a low water activity (aw). These obstacles include the presence of antimicrobial compounds, particulates, PCR inhibitors, and fatty matrices. New approaches should be sought to increase the sensitivity of pathogen testing in low-aw foods and to overcome the effects of various inhibitors and antimicrobials. The U.S. Food and Drug Administration and other laboratories are working toward this goal. This review will address these issues while delineating specific inhibitors and antimicrobials that impede testing of low-aw foods. A review of relevant rapid and conventional testing methodologies for Salmonella in low-aw foods will also be discussed.


Assuntos
Microbiologia de Alimentos , Salmonella , Água , Microbiologia de Alimentos/métodos , Salmonella/isolamento & purificação , Água/química
8.
Annu Rev Food Sci Technol ; 10: 409-427, 2019 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-30908948

RESUMO

Spices in the desiccated state provide an environment that allows the survival of many foodborne pathogens. Currently, the incidence of pathogen-positive spices imported into the United States is 1.9 times higher than for any other imported food. Correspondingly, imported spices have been associated with numerous foodborne outbreaks and multiple product recalls. Despite the association with recalls and outbreaks, the actual pathogen populations in spices, when found, are frequently extremely small. In addition to pathogenic bacterial species, toxigenic molds have been frequently recovered from spices, and aflatoxins have been found in as many as 58% of the spices sampled. The presence of toxigenic molds is especially problematic to the immunocompromised or those on immunosuppressive therapy and has been linked to gut aspergillosis. Numerous detection methods, including both traditional and advanced DNA regimes, are being tested to optimize recovery of pathogens from spices. Further, a number of new inactivation intervention methods to decontaminate spices are examined and discussed.


Assuntos
Microbiologia de Alimentos , Especiarias/microbiologia , Surtos de Doenças , Contaminação de Alimentos/análise , Doenças Transmitidas por Alimentos/epidemiologia , Doenças Transmitidas por Alimentos/microbiologia , Humanos
9.
J Food Prot ; 81(9): 1411-1417, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30059253

RESUMO

Salmonella can survive in low-moisture, high-protein, and high-fat foods for several years. Despite nationwide outbreaks and recalls due to the presence of Salmonella in low-moisture foods, information on thermal inactivation of Salmonella in these products is limited. This project evaluated the impact of water activity (aw), temperature, and food composition on thermal inactivation of Salmonella enterica serovar Agona in defined high-protein and high-fat model food matrices. Each matrix was inoculated with Salmonella Agona and adjusted to obtain a target aw, ranging from 0.50 to 0.98. Samples were packed into aluminum test cells and heated (52 to 90°C) under isothermal conditions. Survival of Salmonella Agona was detected on tryptic soy agar with 0.6% yeast extract. Complex influences by food composition, aw, and temperature resulted in significantly different ( P < 0.05) thermal resistance of Salmonella for the conditions tested. It was estimated that the same point temperatures at which the D-values of the two matrices at each aw (0.63, 0.73, 0.81, and 0.90) were identical were 79.48, 71.28, 69.62, and 38.42°C, respectively. Above these temperatures, the D-values in high-protein matrices were larger than the D-values in high-fat matrices at each aw. Below these temperatures, the inverse relationship was observed. A correlation between temperature and aw existed on the basis of the level of fat or protein in the food, showing that these compositional factors must be accounted for when predicating thermal inactivation of Salmonella in foods.


Assuntos
Microbiologia de Alimentos , Temperatura Alta , Salmonella enterica , Água , Contagem de Colônia Microbiana , Salmonella , Salmonella enterica/crescimento & desenvolvimento , Água/análise
10.
Genome Announc ; 6(23)2018 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-29880597

RESUMO

The genome of Listeria monocytogenes strain DFPST0073, isolated from imported fresh Mexican soft cheese in 2003, was sequenced using the Illumina MiSeq platform. Reads were assembled using SPAdes, and genome annotation was performed using the NCBI Prokaryotic Genome Annotation Pipeline.

11.
J Food Prot ; 81(4): 520-527, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29513105

RESUMO

Ready-to-eat foods based on dried partially sprouted seeds have been associated with foodborne salmonellosis. Whereas research has focused on the potential for Salmonella initially present in or on seeds to grow and survive during fresh sprout production, little is known about the potential for growth and survival of Salmonella associated with seeds that have been partially sprouted and dried. The goal of this study was to determine the growth of Salmonella during soaking for partial germination of pumpkin, sunflower, and chia seeds and subsequent survival during drying and storage. Pumpkin, sunflower, and chia seeds were inoculated with a four-serotype Salmonella cocktail by the dry transfer method and were soaked in sterile water at 25 or 37°C for 24 h. During the soaking period, Salmonella exhibited growth rates of 0.37 ± 0.26, 0.27 ± 0.12, and 0.45 ± 0.19 log CFU/h at 25°C and 0.94 ± 0.44, 1.04 ± 0.84, and 0.73 ± 0.36 log CFU/h at 37°C for chia, pumpkin, and sunflower seeds, respectively. Soaked seeds were drained and dried at 25, 51, and 60°C. Drying resulted in >5 log CFU/g loss at both 51 and 60°C and ∼3 log CFU/g loss at 25°C on partially sprouted pumpkin and sunflower seeds. There was no decrease in Salmonella during drying of chia seeds at 25°C, and only drying at 60°C provided losses >5 log CFU/g. Dried seeds were stored at 37 and 45°C at 15 and 76% relative humidity (RH) levels. The combination of temperature and RH exerted a stronger effect than either factor alone, such that rates at which Salmonella decreased generally followed this order: 37°C at 15% RH < 45°C at 15% RH < 37°C at 76% RH < 45°C at 76% RH for all seeds tested. Rates differed based on seed type, with chia seeds and chia seed powder having the smallest rate of Salmonella decrease, followed by sunflower and pumpkin seeds. Drying at higher temperatures (50 and 61°C) or storing at elevated temperature and humidity (45°C and 76% RH) resulted in significantly different rates of Salmonella decrease.


Assuntos
Cucurbita , Helianthus , Salmonella , Sementes , Contagem de Colônia Microbiana , Dessecação , Microbiologia de Alimentos , Germinação , Temperatura Alta , Humanos , Salmonella/crescimento & desenvolvimento , Intoxicação Alimentar por Salmonella , Infecções por Salmonella , Sementes/microbiologia , Sorogrupo , Temperatura , Água
12.
J Food Prot ; 80(6): 940-946, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28463084

RESUMO

Tahini, a low-moisture food that is made from sesame seeds, has been implicated in outbreaks of salmonellosis. In this study, the fate of Salmonella was determined through an entire process for the manufacture of tahini, including a 24-h seed soaking period before roasting, subsequent grinding, and storage at refrigeration temperature. Salmonella populations increased by more than 3 log CFU/g during a 24-h soaking period, reaching more than 7 log CFU/g. Survival of Salmonella during roasting at three temperatures, 95, 110, and 130°C, was assessed using seeds on which Salmonella was grown. Salmonella survival was impacted both by temperature and the water activity (aw) at the beginning of the roasting period. When roasted at 130°C with a high initial aw (≥0.90) and starting Salmonella populations of ∼8.5 log CFU/g, populations quickly decreased below detection limits within the first 10 min. However, when the seeds were reduced to an aw of 0.45 before roasting at the same temperature, 3.5 log CFU/g remained on the seeds after 60 min. In subsequent storage studies, seeds were roasted at 130°C for 15 min before processing into tahini. For the storage studies, tahini was inoculated using two methods. The first method used seeds on which Salmonella was first grown before roasting. In the second method, Salmonella was inoculated into the tahini after manufacture. All tahini was stored for 119 days at 4°C. No change in Salmonella populations was recorded for tahini throughout the entire 119 days regardless of the inoculation method used. These combined results indicate the critical importance of aw during a roasting step during tahini manufacture. Salmonella that survive roasting will likely remain viable throughout the normal shelf life of tahini.


Assuntos
Contagem de Colônia Microbiana , Salmonella , Manipulação de Alimentos , Microbiologia de Alimentos , Refrigeração , Intoxicação Alimentar por Salmonella , Temperatura , Fatores de Tempo
13.
J Food Prot ; 80(5): 879-885, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28414256

RESUMO

The impact of temperature, water activity (aw), and nut composition on Salmonella survival on tree nuts has not been thoroughly examined. The aim of this study was to determine the effect of temperature, aw, and nut composition on the survival of Salmonella on tree nuts and develop predictive models. Pecans, hazelnuts, and pine nuts were chosen based on differences in their typical fat content. Nuts were inoculated with a cocktail of five Salmonella serotypes (11 log CFU/mL) and then were dried and stored at 4, 10, and 25°C at 0.41 ± 0.06 and 0.60 ± 0.05 aw for 1 year. Ten-gram quantities were removed at different intervals up to 364 days to test for surviving Salmonella populations (plating on selective and nonselective media) and aw. Experiments were carried out in triplicate. Salmonella populations were relatively stable over a year at 4 and 10°C at both aw levels with <1.5-log CFU/g decline. The best predictive model to describe Salmonella survival at 4 and 10°C was a log-linear model with a D-value for each tree nut and aw combination. Significant declines in Salmonella levels were observed at 25°C, where the best fit was a Weibull model with a fixed ρ for all tree nuts (ρ = 0.86), a δ value for each tree nut and aw combination, and a random factor to account for variability among replicates. The time for the first log reduction at 25°C and 0.37 ± 0.009 aw was estimated at 24 ± 2 weeks for hazelnuts, 34 ± 3 weeks for pecans, and 52 ± 7 weeks for pine nuts. At the same temperature, but with 0.54 ± 0.009 aw, the mean estimated time for the first log reduction decreased to 9 ± 1 weeks for hazelnuts, 10 ± 1 weeks for pecans, and 16 ± 1 weeks for pine nuts. Tree nut, aw, and temperature were shown to have a statistically significant effect on survival ( P < 0.05). No apparent influence of fat content on survival was observed. The results of this study can be used to predict changes in Salmonella levels on pecans, hazelnuts, and pine nuts after storage at the different temperatures and aw values.


Assuntos
Microbiologia de Alimentos , Nozes , Salmonella , Carya , Corylus , Contaminação de Alimentos/análise , Cinética , Nozes/microbiologia , Salmonella/crescimento & desenvolvimento , Temperatura , Água/farmacologia
14.
J Food Prot ; 80(2): 338-344, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28221981

RESUMO

Inoculation of a food product for use in subsequent validation studies typically makes use of a high concentration cocktail of microorganisms suspended in aqueous media. However, this inoculation method may prove difficult particularly when the food product is a low-moisture food containing antimicrobial compounds, such as some dried spices. In this study, a dry transfer method for inoculation of clove powder, oregano leaves, ginger powder, and ground black pepper with a five-serovar cocktail of Salmonella was developed and compared with a traditional aqueous inoculation procedure. Spices were inoculated at three levels, 10, 8, and 6 log CFU/g, by using both an aqueous suspension of Salmonella and a dry transfer of Salmonella from previously inoculated silica beads. At the highest inoculation level, the dry transfer method resulted in a significantly higher microbial load (P < 0.05) for ground cloves and oregano, but not for ginger and ground black pepper. At the intermediate inoculation level, differences were apparent only for ginger and black pepper. Inoculation levels of 6 log CFU/g resulted in recoveries below detection limits for both methods of inoculation. Additional examination on the survival of Salmonella on silica beads after inoculation and in clove powder after dry transfer from silica beads showed linear rates of decline, with a rate of -0.011 log CFU/g/day for beads and -0.015 log CFU/g/day for clove powder. The results suggest that dry transfer of Salmonella via inoculated silica beads is a viable alternative when traditional aqueous inoculation is not feasible.


Assuntos
Contagem de Colônia Microbiana , Especiarias , Anti-Infecciosos , Microbiologia de Alimentos , Piper nigrum , Salmonella
15.
J Food Sci ; 82(3): 738-743, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28192610

RESUMO

Little research exists on Salmonella inactivation during extrusion processing, yet many outbreaks associated with low water activity foods since 2006 were linked to extruded foods. The aim of this research was to study Salmonella inactivation during extrusion of a model cereal product. Oat flour was inoculated with Salmonella enterica serovar Agona, an outbreak strain isolated from puffed cereals, and processed using a single-screw extruder at a feed rate of 75 kg/h and a screw speed of 500 rpm. Extrudate samples were collected from the barrel outlet in sterile bags and immediately cooled in an ice-water bath. Populations were determined using standard plate count methods or a modified most probable number when populations were low. Reductions in population were determined and analyzed using a general linear model. The regression model obtained for the response surface tested was Log (NR /NO ) = 20.50 + 0.82T - 141.16aw - 0.0039T2 + 87.91aw2 (R2 = 0.69). The model showed significant (p < 0.05) linear and quadratic effects of aw and temperature and enabled an assessment of critical control parameters. Reductions of 0.67 ± 0.14 to 7.34 ± 0.02 log CFU/g were observed over ranges of aw (0.72 to 0.96) and temperature (65 to 100 °C) tested. Processing conditions above 82 °C and 0.89 aw achieved on average greater than a 5-log reduction of Salmonella. Results indicate that extrusion is an effective means for reducing Salmonella as most processes commonly employed to produce cereals and other low water activity foods exceed these parameters. Thus, contamination of an extruded food product would most likely occur postprocessing as a result of environmental contamination or through the addition of coatings and flavorings.


Assuntos
Avena , Grão Comestível/microbiologia , Manipulação de Alimentos/métodos , Microbiologia de Alimentos , Salmonella enterica/crescimento & desenvolvimento , Contagem de Colônia Microbiana , Farinha , Contaminação de Alimentos/análise , Humanos , Salmonella enterica/isolamento & purificação , Temperatura , Água
16.
J Food Prot ; 78(11): 1954-9, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26555517

RESUMO

The survival of Salmonella on fresh ginger root (Zingiber officinale) during drying was examined using both a laboratory oven at 51 and 60°C with two different fan settings and a small commercially available food dehydrator. The survival of Salmonella in ground ginger stored at 25 and 37°C at 33% (low) and 97% (high) relative humidity (RH) was also examined. To inoculate ginger, a four-serovar cocktail of Salmonella was collected by harvesting agar lawn cells. For drying experiments, ginger slices (1 ± 0.5 mm thickness) were surface inoculated at a starting level of approximately 9 log CFU/g. Higher temperature (60°C) coupled with a slow fan speed (nonstringent condition) to promote a slower reduction in the water activity (aw) of the ginger resulted in a 3- to 4-log reduction in Salmonella populations in the first 4 to 6 h with an additional 2- to 3-log reduction by 24 h. Higher temperature with a higher fan speed (stringent condition) resulted in significantly less destruction of Salmonella throughout the 24-h period (P < 0.001). Survival appeared related to the rate of reduction in the aw. The aw also influenced Salmonella survival during storage of ground ginger. During storage at 97% RH, the maximum aw values were 0.85 at 25°C and 0.87 at 37°C; Salmonella was no longer detected after 25 and 5 days of storage, respectively, under these conditions. At 33% RH, the aw stabilized to approximately 0.35 at 25°C and 0.31 at 37°C. Salmonella levels remained relatively constant throughout the 365-day and 170-day storage periods for the respective temperatures. These results indicate a relationship between temperature and aw and the survival of Salmonella during both drying and storage of ginger.


Assuntos
Manipulação de Alimentos/métodos , Salmonella/crescimento & desenvolvimento , Zingiber officinale/microbiologia , Contagem de Colônia Microbiana , Dessecação , Manipulação de Alimentos/instrumentação , Armazenamento de Alimentos , Zingiber officinale/química , Temperatura Alta , Salmonella/isolamento & purificação , Especiarias/análise , Especiarias/microbiologia , Água/análise
17.
J Food Prot ; 78(4): 661-7, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25836389

RESUMO

The survival of Salmonella on dried chamomile flowers, peppermint leaves, and green tea leaves stored under different conditions was examined. Survival and growth of Salmonella was also assessed after subsequent brewing using dried inoculated teas. A Salmonella enterica serovar cocktail was inoculated onto different dried tea leaves or flowers to give starting populations of approximately 10 log CFU/g. The inoculum was allowed to dry (at ambient temperature for 24 h) onto the dried leaves or flowers prior to storage under 25 and 35 °C at low (<30% relative humidity [RH]) and high (>90% RH) humidity levels. Under the four storage conditions tested, survival followed the order 25 °C with low RH > 35 °C with low RH > 25 °C with high RH > 35 °C with high RH. Salmonella losses at 25 °C with low RH occurred primarily during drying, after which populations showed little decline over 6 months. In contrast, Salmonella decreased below detection after 45 days at 35 °C and high RH in all teas tested. The thermal resistance of Salmonella was assessed at 55 °C immediately after inoculation of tea leaves or flowers, after drying (24 h) onto tea leaves or flowers, and after 28 days of storage at 25 °C with low RH. All conditions resulted in similar D-values (2.78 ± 0.12, 3.04 ± 0.07, and 2.78 ± 0.56, at 0 h, 24 h, and 28 days, respectively), indicating thermal resistance of Salmonella in brewed tea did not change after desiccation and 28 days of storage. In addition, all brewed teas tested supported the growth of Salmonella. If Salmonella survives after storage, it may also survive and grow after a home brewing process.


Assuntos
Camomila/microbiologia , Mentha piperita/microbiologia , Salmonella/isolamento & purificação , Chá/microbiologia , Contagem de Colônia Microbiana , Dessecação , Contaminação de Alimentos/análise , Manipulação de Alimentos , Microbiologia de Alimentos , Armazenamento de Alimentos , Salmonella/crescimento & desenvolvimento
18.
Food Microbiol ; 46: 100-106, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25475272

RESUMO

Microbial contamination of peanut butter by Salmonella poses a significant health risk as Salmonella may remain viable throughout the product shelf life. Effective cleaning and sanitation of processing lines are essential for preventing cross-contamination. The objective of this study was to evaluate the efficacy of a cleaning and sanitation procedure involving hot oil and 60% isopropanol, ± quaternary ammonium compounds, to decontaminate pilot-scale processing equipment harboring Salmonella. Peanut butter inoculated with a cocktail of four Salmonella serovars (∼ 7 log CFU/g) was used to contaminate the equipment (∼ 75 L). The system was then emptied of peanut butter and treated with hot oil (90 °C) for 2 h followed by sanitizer for 1 h. Microbial analysis of food-contact surfaces (7 locations), peanut butter, and oil were conducted. Oil contained ∼ 3.2 log CFU/mL on both trypticase soy agar with yeast extract (TSAYE) and xylose lysine deoxycholate (XLD), indicating hot oil alone was not sufficient to inactivate Salmonella. Environmental sampling found 0.25-1.12 log CFU/cm(2) remaining on processing equipment. After the isopropanol sanitation (± quaternary ammonium compounds), no Salmonella was detected in environmental samples on XLD (<0.16 log CFU/cm(2)). These data suggest that a two-step hot oil clean and isopropanol sanitization treatment may eliminate pathogenic Salmonella from contaminated equipment.


Assuntos
Arachis/microbiologia , Contaminação de Equipamentos , Manipulação de Alimentos/instrumentação , Salmonella/isolamento & purificação , Saneamento/métodos , Arachis/química , Contaminação de Alimentos/análise , Manipulação de Alimentos/normas , Salmonella/crescimento & desenvolvimento , Saneamento/instrumentação
20.
Food Microbiol ; 34(1): 182-8, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23498196

RESUMO

A four serovar cocktail of Salmonella was inoculated into ground black pepper (Piper nigrum) at different water activity (aw) levels at a starting level of 4-5 log cfu/g and incubated at 25 and at 35 °C. At 35 °C and aw of 0.9886 ± 0.0006, the generation time in ground black pepper was 31 ± 3 min with a lag time of 4 ± 1 h. Growth at 25 °C had a longer lag, but generation time was not statistically different from growth at 35 °C. The aw threshold for growth was determined to be 0.9793 ± 0.0027 at 35 °C. To determine survival during storage conditions, ground black pepper was inoculated at approximately 8 log cfu/g and stored at 25 and 35 °C at high (97% RH) and ambient (≤40% RH) humidity. At high relative humidity, aw increased to approximately 0.8-0.9 after approximately 20 days at both temperatures and no Salmonella was detected after 100 and 45 days at 25 and 35 °C, respectively. Under ambient humidity, populations showed an initial decrease of 3-4 log cfu/g, then remained stable for over 8 months at 25 and 35 °C. Results of this study indicate Salmonella can readily grow at permissive aw in ground black pepper and may persist for an extended period of time under typical storage conditions.


Assuntos
Piper nigrum/microbiologia , Salmonella/crescimento & desenvolvimento , Contagem de Colônia Microbiana , Contaminação de Alimentos , Armazenamento de Alimentos , Umidade , Viabilidade Microbiana , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...