Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
PLoS Negl Trop Dis ; 11(6): e0005657, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28586379

RESUMO

Trypanosoma cruzi enters host cells by subverting the mechanism of cell membrane repair. In this process, the parasite induces small injuries in the host cell membrane leading to calcium entry and lysosomal exocytosis, which are followed by compensatory endocytosis events that drive parasites into host cells. We have previously shown that absence of both LAMP-1 and 2, major components of lysosomal membranes, decreases invasion of T. cruzi into host cells, but the mechanism by which they interfere with parasite invasion has not been described. Here we investigated the role of these proteins in parasitophorous vacuole morphology, host cell lysosomal exocytosis, and membrane repair ability. First, we showed that cells lacking only LAMP-2 present the same invasion phenotype as LAMP1/2-/- cells, indicating that LAMP-2 is an important player during T. cruzi invasion process. Second, neither vacuole morphology nor lysosomal exocytosis was altered in LAMP-2 lacking cells (LAMP2-/- and LAMP1/2-/- cells). We then investigated the ability of LAMP-2 deficient cells to perform compensatory endocytosis upon lysosomal secretion, the mechanism by which cells repair their membrane and T. cruzi ultimately enters cells. We observed that these cells perform less endocytosis upon injury when compared to WT cells. This was a consequence of impaired cholesterol traffic in cells lacking LAMP-2 and its influence in the distribution of caveolin-1 at the cell plasma membrane, which is crucial for plasma membrane repair. The results presented here show the major role of LAMP-2 in caveolin traffic and membrane repair and consequently in T. cruzi invasion.


Assuntos
Membrana Celular/fisiologia , Fibroblastos/parasitologia , Proteínas de Membrana Lisossomal/metabolismo , Proteína 2 de Membrana Associada ao Lisossomo/metabolismo , Trypanosoma cruzi/fisiologia , Animais , Caveolina 1/genética , Caveolina 1/metabolismo , Endocitose , Fibroblastos/metabolismo , Fibroblastos/ultraestrutura , Regulação da Expressão Gênica/fisiologia , Proteína 2 de Membrana Associada ao Lisossomo/genética , Proteínas de Membrana Lisossomal/genética , Camundongos Knockout
3.
PLoS Negl Trop Dis ; 6(3): e1583, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22479662

RESUMO

BACKGROUND: Trypomastigotes of Trypanosoma cruzi are able to invade several types of non-phagocytic cells through a lysosomal dependent mechanism. It has been shown that, during invasion, parasites trigger host cell lysosome exocytosis, which initially occurs at the parasite-host contact site. Acid sphingomyelinase released from lysosomes then induces endocytosis and parasite internalization. Lysosomes continue to fuse with the newly formed parasitophorous vacuole until the parasite is completely enclosed by lysosomal membrane, a process indispensable for a stable infection. Previous work has shown that host membrane cholesterol is also important for the T. cruzi invasion process in both professional (macrophages) and non-professional (epithelial) phagocytic cells. However, the mechanism by which cholesterol-enriched microdomains participate in this process has remained unclear. METHODOLOGY/PRINCIPAL FINDING: In the present work we show that cardiomyocytes treated with MßCD, a drug able to sequester cholesterol from cell membranes, leads to a 50% reduction in invasion by T. cruzi trypomastigotes, as well as a decrease in the number of recently internalized parasites co-localizing with lysosomal markers. Cholesterol depletion from host membranes was accompanied by a decrease in the labeling of host membrane lipid rafts, as well as excessive lysosome exocytic events during the earlier stages of treatment. Precocious lysosomal exocytosis in MßCD treated cells led to a change in lysosomal distribution, with a reduction in the number of these organelles at the cell periphery, and probably compromises the intracellular pool of lysosomes necessary for T. cruzi invasion. CONCLUSION/SIGNIFICANCE: Based on these results, we propose that cholesterol depletion leads to unregulated exocytic events, reducing lysosome availability at the cell cortex and consequently compromise T. cruzi entry into host cells. The results also suggest that two different pools of lysosomes are available in the cell and that cholesterol depletion may modulate the fusion of pre-docked lysosomes at the cell cortex.


Assuntos
Membrana Celular/química , Colesterol/análise , Exocitose , Lisossomos/metabolismo , Fusão de Membrana , Trypanosoma cruzi/patogenicidade , Animais , Células Cultivadas , Camundongos , Miócitos Cardíacos/parasitologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...