Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Sci ; 199-200: 103-12, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23265323

RESUMO

Many studies have documented the induction of belowground defenses in plants in response to aboveground herbivory and vice versa, but the genes and signaling molecules mediating systemic induction are not well understood. We performed comparative microarray analysis on maize whorl and root tissues from the insect resistant inbred Mp708 in response to foliar feeding by fall armyworm (Spodoptera frugiperda) caterpillars. Although Mp708 has elevated jasmonic acid (JA) levels prior to herbivory, genes involved in JA biosynthesis were up-regulated in whorls in response to fall armyworm feeding. Alternatively, genes possibly involved in regulating ethylene (ET) perception and signaling were up-regulated in roots following foliar herbivory. Transcript levels of genes encoding proteins involved in direct defenses against herbivores were enhanced both in roots and leaves, but transcriptional factors and genes involved in various biosynthetic pathways were selectively down-regulated in the whorl. The results indicate that foliar herbivory by fall armyworm changes root gene expression pathways suggesting profound long distance signaling. Tissue specific induction and suppression of JA and ET signaling pathway genes provides a clue to their possible roles in signaling between the two distant tissue types that eventually triggers defense responses in the roots in response to foliar herbivory.


Assuntos
Regulação da Expressão Gênica de Plantas/genética , Genes de Plantas/genética , Doenças das Plantas/imunologia , Spodoptera/fisiologia , Zea mays/imunologia , Animais , Vias Biossintéticas/genética , Ciclopentanos/metabolismo , Etilenos/metabolismo , Comportamento Alimentar , Perfilação da Expressão Gênica , Genótipo , Herbivoria , Interações Hospedeiro-Parasita , Análise de Sequência com Séries de Oligonucleotídeos , Especificidade de Órgãos , Oxilipinas/metabolismo , Doenças das Plantas/parasitologia , Folhas de Planta/genética , Folhas de Planta/imunologia , Folhas de Planta/parasitologia , Folhas de Planta/fisiologia , Raízes de Plantas/genética , Raízes de Plantas/imunologia , Raízes de Plantas/parasitologia , Raízes de Plantas/fisiologia , Brotos de Planta/genética , Brotos de Planta/imunologia , Brotos de Planta/parasitologia , Brotos de Planta/fisiologia , Transdução de Sinais/genética , Transcriptoma , Zea mays/genética , Zea mays/parasitologia , Zea mays/fisiologia
2.
PLoS One ; 7(5): e36892, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22606305

RESUMO

BACKGROUND: Aspergillus flavus infection and aflatoxin contamination of maize pose negative impacts in agriculture and health. Commercial maize hybrids are generally susceptible to this fungus. Significant levels of host plant resistance have been observed in certain maize inbred lines. This study was conducted to identify maize genes associated with host plant resistance or susceptibility to A. flavus infection and aflatoxin accumulation. RESULTS: Genome wide gene expression levels with or without A. flavus inoculation were compared in two resistant maize inbred lines (Mp313E and Mp04:86) in contrast to two susceptible maize inbred lines (Va35 and B73) by microarray analysis. Principal component analysis (PCA) was used to find genes contributing to the larger variances associated with the resistant or susceptible maize inbred lines. The significance levels of gene expression were determined by using SAS and LIMMA programs. Fifty candidate genes were selected and further investigated by quantitative RT-PCR (qRT-PCR) in a time-course study on Mp313E and Va35. Sixteen of the candidate genes were found to be highly expressed in Mp313E and fifteen in Va35. Out of the 31 highly expressed genes, eight were mapped to seven previously identified quantitative trait locus (QTL) regions. A gene encoding glycine-rich RNA binding protein 2 was found to be associated with the host hypersensitivity and susceptibility in Va35. A nuclear pore complex protein YUP85-like gene was found to be involved in the host resistance in Mp313E. CONCLUSION: Maize genes associated with host plant resistance or susceptibility were identified by a combination of microarray analysis, qRT-PCR analysis, and QTL mapping methods. Our findings suggest that multiple mechanisms are involved in maize host plant defense systems in response to Aspergillus flavus infection and aflatoxin accumulation. These findings will be important in identification of DNA markers for breeding maize lines resistant to aflatoxin accumulation.


Assuntos
Aspergillus flavus/patogenicidade , Genes de Plantas , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Zea mays/genética , Zea mays/microbiologia , Aflatoxinas/farmacocinética , Sequência de Bases , Mapeamento Cromossômico , DNA de Plantas/genética , Perfilação da Expressão Gênica , Predisposição Genética para Doença , Interações Hospedeiro-Patógeno/genética , Análise de Sequência com Séries de Oligonucleotídeos , Locos de Características Quantitativas , Zea mays/metabolismo
3.
BMC Bioinformatics ; 11 Suppl 6: S25, 2010 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-20946609

RESUMO

BACKGROUND: Aspergillus flavus Link:Fr, an opportunistic fungus that produces aflatoxin, is pathogenic to maize and other oilseed crops. Aflatoxin is a potent carcinogen, and its presence markedly reduces the value of grain. Understanding and enhancing host resistance to A. flavus infection and/or subsequent aflatoxin accumulation is generally considered an efficient means of reducing grain losses to aflatoxin. Different proteomic, genomic and genetic studies of maize (Zea mays L.) have generated large data sets with the goal of identifying genes responsible for conferring resistance to A. flavus, or aflatoxin. RESULTS: In order to maximize the usage of different data sets in new studies, including association mapping, we have constructed a relational database with web interface integrating the results of gene expression, proteomic (both gel-based and shotgun), Quantitative Trait Loci (QTL) genetic mapping studies, and sequence data from the literature to facilitate selection of candidate genes for continued investigation. The Corn Fungal Resistance Associated Sequences Database (CFRAS-DB) (http://agbase.msstate.edu/) was created with the main goal of identifying genes important to aflatoxin resistance. CFRAS-DB is implemented using MySQL as the relational database management system running on a Linux server, using an Apache web server, and Perl CGI scripts as the web interface. The database and the associated web-based interface allow researchers to examine many lines of evidence (e.g. microarray, proteomics, QTL studies, SNP data) to assess the potential role of a gene or group of genes in the response of different maize lines to A. flavus infection and subsequent production of aflatoxin by the fungus. CONCLUSIONS: CFRAS-DB provides the first opportunity to integrate data pertaining to the problem of A. flavus and aflatoxin resistance in maize in one resource and to support queries across different datasets. The web-based interface gives researchers different query options for mining the database across different types of experiments. The database is publically available at http://agbase.msstate.edu.


Assuntos
Aspergillus flavus/genética , Bases de Dados Genéticas , Zea mays/microbiologia , Aspergillus flavus/patogenicidade , Genômica , Polimorfismo de Nucleotídeo Único , Proteômica , Locos de Características Quantitativas , Zea mays/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...