Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 180
Filtrar
1.
Eur Cell Mater ; 45: 158-172, 2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37382477

RESUMO

Extracellular matrix (ECM) biomaterials have shown promise for treating small artucular-joint defetcs. However, ECM-based biomaterials generally lack appropriate mechanical properties to support physiological loads and are prone to delamination in larger cartilage defects. To overcome these common mechanical limitations, a collagen hyaluronic-acid (CHyA) matrix, with proven regenerative potential, was reinforced with a bioabsorbable 3D-printed framework to support physiological loads. Polycaprolactone (PCL) was 3D-printed in two configurations, rectilinear and gyroid designs, that were extensively mechanically characterised. Both scaffold designs increased the compressive modulus of the CHyA matrices by three orders of magnitude, mimicking the physiological range (0.5-2.0 MPa) of healthy cartilage. The gyroid scaffold proved to be more flexible compared to the rectilinear scaffold, thus better contouring to the curvature of a femoral condyle. Additionally, PCL reinforcement of the CHyA matrix increased the tensile modulus and allowed for suture fixation of the scaffold to the subchondral bone, thus addressing the major challenge of biomaterial fixation to articular joint surfaces in shallow defects. In vitro evaluation confirmed successful infiltration of human mesenchymal stromal cells (MSCs) within the PCL-CHyA scaffolds, which resulted in increased production of sulphated glycosaminoglycans (sGAG/DNA; p = 0.0308) compared to non-reinforced CHyA matrices. Histological staining using alcian blue confirmed these results, while also indicating greater spatial distribution of sGAG throughout the PCL-CHyA scaffold. These findings have a great clinical importance as they provide evidence that reinforced PCL-CHyA scaffolds, with their increased chondroinductive potential and compatibility with joint fixation techniques, could be used to repair large-area chondral defects that currently lack effective treatment options.


Assuntos
Implantes Absorvíveis , Cartilagem , Humanos , Glicosaminoglicanos , Ácido Hialurônico , Materiais Biocompatíveis/farmacologia , Impressão Tridimensional
2.
Anaerobe ; 74: 102539, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35217150

RESUMO

OBJECTIVES: Carriage of Clostridioides difficile by different species of animals has led to speculation that animals could represent a reservoir of this pathogen for human infections. The objective of this study was to compare C. difficile isolates from humans, dogs, and cattle from a restricted geographic area. METHODS: C. difficile isolates from 36 dogs and 15 dairy calves underwent whole genome sequencing, and phenotypic assays assessing growth and virulence were performed. Genomes of animal-derived isolates were compared to 29 genomes of isolates from a pediatric population as well as 44 reference genomes. RESULTS: Growth rates and relative cytotoxicity of isolates were significantly higher and lower, respectively, in bovine-derived isolates compared to pediatric- and canine-derived isolates. Analysis of core genes showed clustering by host species, though in a few cases, human strains co-clustered with canine or bovine strains, suggesting possible interspecies transmission. Geographic differences (e.g., farm, litter) were small compared to differences between species. In an analysis of accessory genes, the total number of genes in each genome varied between host species, with 6.7% of functional orthologs differentially present/absent between host species and bovine-derived strains having the lowest number of genes. Canine-derived isolates were most likely to be non-toxigenic and more likely to carry phages. A targeted study of episomes identified in local pediatric strains showed sharing of a methicillin-resistance plasmid with dogs, and historic sharing of a wide range of episomes across hosts. Bovine-derived isolates harbored the widest variety of antibiotic-resistance genes, followed by canine CONCLUSIONS: While C. difficile isolates mostly clustered by host species, occasional co-clustering of canine and pediatric-derived isolates suggests the possibility of interspecies transmission. The presence of a pool of resistance genes in animal-derived isolates with the potential to appear in humans given sufficient pressure from antibiotic use warrants concern.


Assuntos
Clostridioides difficile , Infecções por Clostridium , Animais , Antibacterianos/farmacologia , Bovinos , Criança , Clostridioides , Clostridioides difficile/genética , Clostridium , Infecções por Clostridium/epidemiologia , Cães , Humanos
3.
Biomaterials ; 283: 121405, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35220017

RESUMO

Successful cartilage engineering requires the generation of biological grafts mimicking the structure, composition and mechanical behaviour of the native tissue. Here melt electrowriting (MEW) was used to produce arrays of polymeric structures whose function was to orient the growth of cellular aggregates spontaneously generated within these structures, and to provide tensile reinforcement to the resulting tissues. Inkjet printing was used to deposit defined numbers of cells into MEW structures, which self-assembled into an organized array of spheroids within hours, ultimately generating a hybrid tissue that was hyaline-like in composition. Structurally, the engineered cartilage mimicked the histotypical organization observed in skeletally immature synovial joints. This biofabrication framework was then used to generate scaled-up (50 mm × 50 mm) cartilage implants containing over 3,500 cellular aggregates in under 15 min. After 8 weeks in culture, a 50-fold increase in the compressive stiffness of these MEW reinforced tissues were observed, while the tensile properties were still dominated by the polymer network, resulting in a composite construct demonstrating tension-compression nonlinearity mimetic of the native tissue. Helium ion microscopy further demonstrated the development of an arcading collagen network within the engineered tissue. This hybrid bioprinting strategy provides a versatile and scalable approach to engineer cartilage biomimetic grafts for biological joint resurfacing.


Assuntos
Bioimpressão , Cartilagem Articular , Bioimpressão/métodos , Impressão Tridimensional , Engenharia Tecidual/métodos , Alicerces Teciduais/química
4.
Osteoarthritis Cartilage ; 28(5): 603-612, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31730805

RESUMO

OBJECTIVE: A number of studies have demonstrated that molecules called 'alarmins' or danger-associated molecular patterns (DAMPs), contribute to inflammatory processes in the OA joint. Metabolic reprogramming of immune cells, including macrophages, is emerging as a prominent player in determining immune cell phenotype and function. The aim of this study was to investigate if basic calcium phosphate (BCP) crystals which are OA-associated DAMPs, impact on macrophage phenotype and metabolism. METHODS: Human monocyte derived macrophages were treated with BCP crystals and expression of M1 (CXCL9, CXCL10) and M2 (MRC1, CCL13)-associated markers was assessed by real-time PCR while surface maturation marker (CD40, CD80 & CD86) expression was assessed by flow cytometry. BCP induced metabolic changes were assessed by Seahorse analysis and glycolytic marker expression (hexokinase 2(HK2), Glut1 and HIF1α) was examined using real-time PCR and immunoblotting. RESULTS: Treatment with BCP crystals upregulated mRNA levels of CXCL9 and CXCL10 while concomitantly downregulating expression of CCL13 and MRC1. Furthermore, BCP-treated macrophages enhanced surface expression of the maturation makers, CD40, CD80 and CD86. BCP-treated cells also exhibited a shift towards glycolysis as evidenced by an increased ECAR/OCR ratio and enhanced expression of the glycolytic markers, HK2, Glut1 and HIF1α. Finally, BCP-induced macrophage activation and alarmin expression was reduced in the presence of the glycolytic inhibitor, 2-DG. CONCLUSIONS: This study not only provides further insight into how OA-associated DAMPs impact on immune cell function, but also highlights metabolic reprogramming as a potential therapeutic target for calcium crystal-related arthropathies.


Assuntos
Fosfatos de Cálcio/farmacologia , Citocinas/efeitos dos fármacos , Glicólise/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Osteoartrite/imunologia , Antígeno B7-1/metabolismo , Antígeno B7-2/metabolismo , Antígenos CD40/metabolismo , Quimiocina CXCL10/efeitos dos fármacos , Quimiocina CXCL10/genética , Quimiocina CXCL10/imunologia , Quimiocina CXCL9/efeitos dos fármacos , Quimiocina CXCL9/genética , Quimiocina CXCL9/imunologia , Citocinas/genética , Regulação para Baixo , Transportador de Glucose Tipo 1/efeitos dos fármacos , Transportador de Glucose Tipo 1/genética , Transportador de Glucose Tipo 1/metabolismo , Glicólise/genética , Hexoquinase/efeitos dos fármacos , Hexoquinase/genética , Hexoquinase/metabolismo , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/efeitos dos fármacos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Ativação de Macrófagos , Macrófagos/imunologia , Macrófagos/metabolismo , Glicoproteínas de Membrana/efeitos dos fármacos , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/imunologia , Proteínas Quimioatraentes de Monócitos/efeitos dos fármacos , Proteínas Quimioatraentes de Monócitos/genética , Proteínas Quimioatraentes de Monócitos/imunologia , Osteoartrite/genética , Fenótipo , RNA Mensageiro/efeitos dos fármacos , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Receptores Imunológicos/efeitos dos fármacos , Receptores Imunológicos/genética , Receptores Imunológicos/imunologia , Regulação para Cima
5.
Eur Cell Mater ; 38: 168-187, 2019 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-31602629

RESUMO

Interconnected porosity is critical to the design of regenerative scaffolds, as it permits cell migration, vascularisation and diffusion of nutrients and regulatory molecules inside the scaffold. 3D printing is a promising strategy to achieve this as it allows the control over scaffold pore size, porosity and interconnectivity. Thus, the aim of the present study was to integrate distinct biofabrication strategies to develop a multiscale porous scaffold that was not only mechanically functional at the time of implantation, but also facilitated rapid vascularisation and provided stem cells with appropriate cues to enable their differentiation into osteoblasts. To achieve this, polycaprolactone (PCL) was functionalised with decellularised bone extracellular matrix (ECM), to produce osteoinductive filaments for 3D printing. The addition of bone ECM to the PCL not only increased the mechanical properties of the resulting scaffold, but also increased cellular attachment and enhanced osteogenesis of mesenchymal stem cells (MSCs). In vivo, scaffold pore size determined the level of vascularisation, with a larger filament spacing supporting faster vessel in-growth and more new bone formation. By freeze-drying solubilised bone ECM within these 3D-printed scaffolds, it was possible to introduce a matrix network with microscale porosity that further enhanced cellular attachment in vitro and increased vessel infiltration and overall levels of new bone formation in vivo. To conclude, an "off-the-shelf" multiscale bone-ECM-derived scaffold was developed that was mechanically stable and, once implanted in vivo, will drive vascularisation and, ultimately, lead to bone regeneration.


Assuntos
Regeneração Óssea , Matriz Extracelular/química , Impressão Tridimensional , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Animais , Adesão Celular , Diferenciação Celular , Células Cultivadas , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/fisiologia , Camundongos , Camundongos Endogâmicos BALB C , Poliésteres/química , Suínos
6.
J Control Release ; 301: 13-27, 2019 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-30853527

RESUMO

The regeneration of complex tissues and organs remains a major clinical challenge. With a view towards bioprinting such tissues, we developed a new class of pore-forming bioink to spatially and temporally control the presentation of therapeutic genes within bioprinted tissues. By blending sacrificial and stable hydrogels, we were able to produce bioinks whose porosity increased with time following printing. When combined with amphipathic peptide-based plasmid DNA delivery, these bioinks supported enhanced non-viral gene transfer to stem cells in vitro. By modulating the porosity of these bioinks, it was possible to direct either rapid and transient (pore-forming bioinks), or slower and more sustained (solid bioinks) transfection of host or transplanted cells in vivo. To demonstrate the utility of these bioinks for the bioprinting of spatially complex tissues, they were next used to zonally position stem cells and plasmids encoding for either osteogenic (BMP2) or chondrogenic (combination of TGF-ß3, BMP2 and SOX9) genes within networks of 3D printed thermoplastic fibers to produce mechanically reinforced, gene activated constructs. In vivo, these bioprinted tissues supported the development of a vascularised, bony tissue overlaid by a layer of stable cartilage. When combined with multiple-tool biofabrication strategies, these gene activated bioinks can enable the bioprinting of a wide range of spatially complex tissues.


Assuntos
Bioimpressão , Técnicas de Transferência de Genes , Tinta , Engenharia Tecidual , Alginatos , Animais , Proteína Morfogenética Óssea 2/genética , DNA/administração & dosagem , Hidrogéis , Células-Tronco Mesenquimais , Metilcelulose , Plasmídeos , Porosidade , Impressão Tridimensional , Fatores de Transcrição SOX9/genética , Suínos , Fator de Crescimento Transformador beta3/genética
7.
Mater Today Bio ; 3: 100009, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32159148

RESUMO

There is an urgent, clinical need for an alternative to the use of autologous grafts for the ever increasing number of bone grafting procedures performed annually. Herein, we describe a developmentally inspired approach to bone tissue engineering, which focuses on leveraging biomaterials as platforms for recapitulating the process of endochondral ossification. To begin, we describe the traditional biomaterial-based approaches to tissue engineering that have been investigated as methods to promote in vivo bone regeneration, including the use of three-dimensional biomimetic scaffolds, the delivery of growth factors and recombinant proteins, and the in vitro engineering of mineralized bone-like tissue. Thereafter, we suggest that some of the hurdles encountered by these traditional tissue engineering approaches may be circumvented by modulating the endochondral route to bone repair and, to that end, we assess various biomaterials that can be used in combination with cells and signaling factors to engineer hypertrophic cartilaginous grafts capable of promoting endochondral bone formation. Finally, we examine the emerging trends in biomaterial-based approaches to endochondral bone regeneration, such as the engineering of anatomically shaped templates for bone and osteochondral tissue engineering, the fabrication of mechanically reinforced constructs using emerging three-dimensional bioprinting techniques, and the generation of gene-activated scaffolds, which may accelerate the field towards its ultimate goal of clinically successful bone organ regeneration.

8.
J Tissue Eng Regen Med ; 12(3): e1826-e1835, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29105354

RESUMO

Injuries to the meniscus of the knee commonly lead to osteoarthritis. Current therapies for meniscus regeneration, including meniscectomies and scaffold implantation, fail to achieve complete functional regeneration of the tissue. This has led to increased interest in cell and gene therapies and tissue engineering approaches to meniscus regeneration. The implantation of a biomimetic implant, incorporating cells, growth factors, and extracellular matrix (ECM)-derived proteins, represents a promising approach to functional meniscus regeneration. The objective of this study was to develop a range of ECM-functionalised bioinks suitable for 3D bioprinting of meniscal tissue. To this end, alginate hydrogels were functionalised with ECM derived from the inner and outer regions of the meniscus and loaded with infrapatellar fat pad-derived stem cells. In the absence of exogenously supplied growth factors, inner meniscus ECM promoted chondrogenesis of fat pad-derived stem cells, whereas outer meniscus ECM promoted a more elongated cell morphology and the development of a more fibroblastic phenotype. With exogenous growth factors supplementation, a more fibrogenic phenotype was observed in outer ECM-functionalised hydrogels supplemented with connective tissue growth factor, whereas inner ECM-functionalised hydrogels supplemented with TGFß3 supported the highest levels of Sox-9 and type II collagen gene expression and sulfated glycosaminoglycans (sGAG) deposition. The final phase of the study demonstrated the printability of these ECM-functionalised hydrogels, demonstrating that their codeposition with polycaprolactone microfibres dramatically improved the mechanical properties of the 3D bioprinted constructs with no noticeable loss in cell viability. These bioprinted constructs represent an exciting new approach to tissue engineering of functional meniscal grafts.


Assuntos
Tecido Adiposo/citologia , Bioimpressão/métodos , Matriz Extracelular/metabolismo , Hidrogéis/farmacologia , Menisco/metabolismo , Células-Tronco/citologia , Animais , Diferenciação Celular/efeitos dos fármacos , Forma Celular/efeitos dos fármacos , Matriz Extracelular/efeitos dos fármacos , Tinta , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Articulações/citologia , Especificidade de Órgãos , Fenótipo , Poliésteres/farmacologia , Impressão Tridimensional , Células-Tronco/efeitos dos fármacos , Células-Tronco/metabolismo , Suínos
9.
Acta Biomater ; 55: 226-238, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28363788

RESUMO

Controlling the phenotype of mesenchymal stem cells (MSCs) through the delivery of regulatory genes is a promising strategy in tissue engineering (TE). Essential to effective gene delivery is the choice of gene carrier. Non-viral delivery vectors have been extensively used in TE, however their intrinsic effects on MSC differentiation remain poorly understood. The objective of this study was to investigate the influence of three different classes of non-viral gene delivery vectors: (1) cationic polymers (polyethylenimine, PEI), (2) inorganic nanoparticles (nanohydroxyapatite, nHA) and (3) amphipathic peptides (RALA peptide) on modulating stem cell fate after reporter and therapeutic gene delivery. Despite facilitating similar reporter gene transfection efficiencies, these nanoparticle-based vectors had dramatically different effects on MSC viability, cytoskeletal morphology and differentiation. After reporter gene delivery (pGFP or pLUC), the nHA and RALA vectors supported an elongated MSC morphology, actin stress fibre formation and the development of mature focal adhesions, while cells appeared rounded and less tense following PEI transfection. These changes in MSC morphology correlated with enhanced osteogenesis following nHA and RALA transfection and adipogenesis following PEI transfection. When therapeutic genes encoding for transforming growth factor beta 3 (TGF-ß3) and/or bone morphogenic protein 2 (BMP2) were delivered to MSCs, nHA promoted osteogenesis in 2D culture and the development of an endochondral phenotype in 3D culture, while RALA was less osteogenic and appeared to promote a more stable hyaline cartilage-like phenotype. In contrast, PEI failed to induce robust osteogenesis or chondrogenesis of MSCs, despite effective therapeutic protein production. Taken together, these results demonstrate that the differentiation of MSCs through the application of non-viral gene delivery strategies depends not only on the gene delivered, but also on the gene carrier itself. STATEMENT OF SIGNIFICANCE: Nanoparticle-based non-viral gene delivery vectors have been extensively used in regenerative medicine, however their intrinsic effects on mesenchymal stem cell (MSC) differentiation remain poorly understood. This paper demonstrates that different classes of commonly used non-viral vectors are not inert and they have a strong effect on cell morphology, stress fiber formation and gene transcription in MSCs, which in turn modulates their capacity to differentiate towards osteogenic, adipogenic and chondrogenic lineages. These results also point to the need for careful and tissue-specific selection of nanoparticle-based delivery vectors to prevent undesired phenotypic changes and off-target effects when delivering therapeutic genes to damaged or diseased tissues.


Assuntos
Técnicas de Transferência de Genes , Teste de Materiais , Células-Tronco Mesenquimais/metabolismo , Nanopartículas/metabolismo , Animais , Durapatita/química , Durapatita/farmacologia , Células-Tronco Mesenquimais/citologia , Peptídeos/química , Peptídeos/farmacologia , Polietilenoimina/química , Polietilenoimina/farmacologia , Suínos
10.
Rev Sci Instrum ; 88(1): 013707, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28147687

RESUMO

We report the characterisation of gated optical image intensifiers for fluorescence lifetime imaging, evaluating the performance of several different prototypes that culminate in a new design that provides improved spatial resolution conferred by the addition of a magnetic field to reduce the lateral spread of photoelectrons on their path between the photocathode and microchannel plate, and higher signal to noise ratio conferred by longer time gates. We also present a methodology to compare these systems and their capabilities, including the quantitative readouts of Förster resonant energy transfer.

11.
Eur Cell Mater ; 33: 130-142, 2017 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-28197989

RESUMO

Limitations associated with demineralised bone matrix and other grafting materials have motivated the development of alternative strategies to enhance the repair of large bone defects. The growth plate (GP) of developing limbs contain a plethora of growth factors and matrix cues which contribute to long bone growth, suggesting that biomaterials derived from its extracellular matrix (ECM) may be uniquely suited to promoting bone regeneration. The goal of this study was to generate porous scaffolds from decellularised GP ECM and to evaluate their ability to enhance host mediated bone regeneration following their implantation into critically-sized rat cranial defects. The scaffolds were first assessed by culturing with primary human macrophages, which demonstrated that decellularisation resulted in reduced IL-1ß and IL-8 production. In vitro, GP derived scaffolds were found capable of supporting osteogenesis of mesenchymal stem cells via either an intramembranous or an endochondral pathway, demonstrating the intrinsic osteoinductivity of the biomaterial. Furthermore, upon implantation into cranial defects, GP derived scaffolds were observed to accelerate vessel in-growth, mineralisation and de novo bone formation. These results support the use of decellularised GP ECM as a scaffold for large bone defect regeneration.


Assuntos
Regeneração Óssea , Osso e Ossos/patologia , Matriz Extracelular/metabolismo , Lâmina de Crescimento/metabolismo , Alicerces Teciduais/química , Cicatrização , Animais , Osso e Ossos/diagnóstico por imagem , Condrogênese , Citocinas/biossíntese , Glicosaminoglicanos/metabolismo , Lâmina de Crescimento/ultraestrutura , Humanos , Macrófagos/citologia , Masculino , Osteogênese , Fenótipo , Porosidade , Ratos Endogâmicos F344 , Crânio/diagnóstico por imagem , Crânio/patologia , Sus scrofa , Microtomografia por Raio-X
12.
Acta Biomater ; 36: 55-62, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26961807

RESUMO

UNLABELLED: Freshly isolated stromal cells can potentially be used as an alternative to in vitro expanded cells in regenerative medicine. Their use requires the development of bioactive hydrogels or scaffolds which provide an environment to enhance their proliferation and tissue-specific differentiation in vivo. The goal of the current study was to develop an injectable fibrin hydrogel functionalized with cartilage ECM microparticles and transforming growth factor (TGF)-ß3 as a putative therapeutic for articular cartilage regeneration. ECM microparticles were produced by cryomilling and freeze-drying porcine articular cartilage. Up to 2% (w/v) ECM could be incorporated into fibrin without detrimentally affecting its capacity to form stable hydrogels. To access the chondroinductivity of cartilage ECM, we compared chondrogenesis of infrapatellar fat pad-derived stem cells in fibrin hydrogels functionalized with either particulated ECM or control gelatin microspheres. Cartilage ECM particles could be used to control the delivery of TGF-ß3 to IFP-derived stem cells within fibrin hydrogels in vitro, and furthermore, led to higher levels of sulphated glycosaminoglycan (sGAG) and collagen accumulation compared to control constructs loaded with gelatin microspheres. In vivo, freshly isolated stromal cells generated a more cartilage-like tissue within fibrin hydrogels functionalized with cartilage ECM particles compared to the control gelatin loaded constructs. These tissues stained strongly for type II collagen and contained higher levels of sGAGs. These results support the use of fibrin hydrogels functionalized with cartilage ECM components in single-stage, cell-based therapies for joint regeneration. STATEMENT OF SIGNIFICANCE: An alternative to the use of in vitro expanded cells in regenerative medicine is the use of freshly isolated stromal cells, where a bioactive scaffold or hydrogel is used to provide an environment that enhances their proliferation and tissue-specific differentiation in vivo. The objective of this study was to develop an injectable fibrin hydrogel functionalized with cartilage ECM micro-particles and the growth factor TGF-ß3 as a therapeutic for articular cartilage regeneration. This study demonstrates that freshly isolated stromal cells generate cartilage tissue in vivo when incorporated into such a fibrin hydrogels functionalized with cartilage ECM particles. These findings open up new possibilities for in-theatre, single-stage, cell-based therapies for joint regeneration.


Assuntos
Cartilagem/fisiologia , Condrogênese , Matriz Extracelular/química , Fibrina/química , Hidrogéis/química , Regeneração , Animais , Cartilagem/citologia , Feminino , Humanos , Masculino , Células Estromais/citologia , Células Estromais/metabolismo , Suínos
13.
Eur Cell Mater ; 30: 163-85; discussion 185-6, 2015 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-26412388

RESUMO

Arthroplasty is currently the only surgical procedure available to restore joint function following articular cartilage and bone degeneration associated with diseases such as osteoarthritis (OA). A potential alternative to this procedure would be to tissue-engineer a biological implant and use it to replace the entire diseased joint. The objective of this study was therefore to tissue-engineer a scaled-up, anatomically shaped, osteochondral construct suitable for partial or total resurfacing of a diseased joint. To this end it was first demonstrated that a bone marrow derived mesenchymal stem cell seeded alginate hydrogel could support endochondral bone formation in vivo within the osseous component of an osteochondral construct, and furthermore, that a phenotypically stable layer of articular cartilage could be engineered over this bony tissue using a co-culture of chondrocytes and mesenchymal stem cells. Co-culture was found to enhance the in vitro development of the chondral phase of the engineered graft and to dramatically reduce its mineralisation in vivo. In the final part of the study, tissue-engineered grafts (~ 2 cm diameter) mimicking the geometry of medial femorotibial joint prostheses were generated using laser scanning and rapid prototyped moulds. After 8 weeks in vivo, a layer of cartilage remained on the surface of these scaled-up engineered implants, with evidence of mineralisation and bone development in the underlying osseous region of the graft. These findings open up the possibility of a tissue-engineered treatment option for diseases such as OA.


Assuntos
Osso e Ossos/citologia , Condrócitos/citologia , Articulação do Joelho/citologia , Osteogênese/fisiologia , Engenharia Tecidual , Alicerces Teciduais , Cartilagem Articular/citologia , Condrogênese/fisiologia , Técnicas de Cocultura/métodos , Articulação do Joelho/patologia , Células-Tronco Mesenquimais/citologia , Engenharia Tecidual/métodos
14.
Osteoarthritis Cartilage ; 23(6): 975-84, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25680651

RESUMO

OBJECTIVE: To explore how changes to the superficial region (SR) of articular cartilage during skeletal development impact its functional properties. It was hypothesised that a functional superficial region is not present in skeletally immature articular cartilage, and removal of this zone of the tissue would only negatively impact the dynamic modulus of the tissue with the attainment of skeletal maturity. METHODS: Porcine osteochondral cores were mechanically tested statically and dynamically with and without their respective superficial regions in confined and unconfined compression at different stages of postnatal development and maturation. A novel combination of histological, biochemical and imaging techniques were utilised to accurately describe changes to the superficial region during postnatal development. RESULTS: Articular cartilage was found to become stiffer and less permeable with age. The confined and unconfined dynamic modulus significantly decreased after removal of the superficial region in skeletally mature cartilage, whilst no significant change was observed in the 4 week old tissue. Biochemical analysis revealed a significant decrease in overall sGAG content with age (as % dry weight), whilst collagen content significantly increased with age, although the composition of the superficial region relative to the remainder of the tissue did not significantly change with age. Helium ion microscopy (HIM) revealed dramatic changes to the organization of the superficial region with age. CONCLUSIONS: The findings demonstrate that the superficial region of articular cartilage undergoes dramatic structural adaptation with age, which in turn plays a key role in determining the dynamic compressive properties of the tissue.


Assuntos
Envelhecimento/fisiologia , Cartilagem Articular/crescimento & desenvolvimento , Envelhecimento/metabolismo , Animais , Cartilagem Articular/metabolismo , Cartilagem Articular/fisiologia , Cartilagem Articular/ultraestrutura , Colágeno/metabolismo , Força Compressiva , Glicosaminoglicanos/metabolismo , Estresse Mecânico , Sus scrofa
15.
Eur Cell Mater ; 29: 105-21; discussion 121-3, 2015 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-25633309

RESUMO

While it is well established that the composition and organisation of articular cartilage dramatically change during skeletal maturation, relatively little is known about how this impacts the mechanical properties of the tissue. In this study, digital image correlation was first used to quantify spatial deformation within mechanically compressed skeletally immature (4 and 8 week old) and mature (1 and 3 year old) porcine articular cartilage. The compressive modulus of the immature tissue was relatively homogeneous, while the stiffness of mature articular cartilage dramatically increased with depth from the articular surface. Other, well documented, biomechanical characteristics of the tissue also emerged with skeletal maturity, such as strain-softening and a depth-dependent Poisson's ratio. The most significant changes that occurred with age were in the deep zone of the tissue, where an order of magnitude increase in compressive modulus (from 0.97 MPa to 9.4 MPa for low applied strains) was observed from 4 weeks postnatal to skeletal maturity. These temporal increases in compressive stiffness occurred despite a decrease in tissue sulphated glycosaminoglycan content, but were accompanied by increases in tissue collagen content. Furthermore, helium ion microscopy revealed dramatic changes in collagen fibril alignment through the depth of the tissue with skeletal maturity, as well as a fivefold increase in fibril diameter with age. Finally, computational modelling was used to demonstrate how both collagen network reorganisation and collagen stiffening play a key role in determining the final compressive mechanical properties of the tissue. Together these findings provide a unique insight into evolving structure-function relations in articular cartilage.


Assuntos
Cartilagem Articular/metabolismo , Cartilagem Articular/fisiologia , Colágeno/metabolismo , Reagentes de Ligações Cruzadas/metabolismo , Fatores Etários , Algoritmos , Aminoácidos/metabolismo , Animais , Fenômenos Biomecânicos , Cartilagem Articular/anatomia & histologia , Força Compressiva , Dipeptídeos/metabolismo , Módulo de Elasticidade , Glicosaminoglicanos/metabolismo , Hélio/química , Histidina/análogos & derivados , Histidina/metabolismo , Microscopia/métodos , Microscopia de Polarização , Modelos Biológicos , Suínos , Fatores de Tempo
16.
Eur Cell Mater ; 28: 358-71, 2014 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-25350251

RESUMO

The object of this study was to elucidate the role of Ca++ signalling in the chondrogenic response of mesenchymal stem cells (MSCs) to hydrostatic pressure (HP). MSCs were seeded into agarose hydrogels, subjected to HP or kept in free swelling conditions, and were cultured either with or without pharmacological inhibitors of Ca++ mobility and downstream targets. Chelating free Ca++, inhibiting voltage-gated calcium channels, and depleting intracellular calcium storessuppressed the beneficial effect of HP on chondrogenesis, indicating that Ca++ mobility may play an important role in the mechanotransduction of HP. However, inhibition of stretch-activated calcium channels in the current experiment yielded similar results to the control group, suggesting that mechanotransduction of HP is distinct from loads that generate cell deformations. Inhibition of the downstream targets calmodulin, calmodulin kinase II, and calcineurin all knocked down the effect of HP on chondrogenesis, implicating these targets in MSCs response to HP. All of the pharmacological inhibitors that abolished the chondrogenic response to HP also maintained a punctate vimentin organisation in the presence of HP, as opposed to the mechanoresponsive groups where the vimentin structure became more diffuse. These results suggest that Ca++ signalling may transduce HP via vimentin adaptation to loading.


Assuntos
Sinalização do Cálcio , Condrogênese , Células-Tronco Mesenquimais/metabolismo , Animais , Bloqueadores dos Canais de Cálcio/farmacologia , Quelantes de Cálcio/farmacologia , Células Cultivadas , Pressão Hidrostática , Mecanotransdução Celular , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/fisiologia , Suínos , Vimentina/metabolismo
17.
Patient Educ Couns ; 96(1): 29-35, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24820638

RESUMO

OBJECTIVE: To assess information provided by midwives about methods to prevent toxoplasmosis, listeriosis and cytomegalovirus, and whether the amount of provided information varied according to clients' and midwives' characteristics. METHODS: Intake consultations with 229 clients in four midwifery practices were videotaped between August 2010 and April 2011. Videotaped intake consultations, where infectious disease prevention were discussed, were evaluated, using a specifically designed nine-item scoring tool. Midwives and clients filled in a questionnaire about their background characteristics. Multilevel linear regression analysis was performed to establish associations between the amount of information provided and clients' and midwives' characteristics. RESULTS: In total 172 consultations with fifteen midwives were suitable for analyses. Information about not eating raw or undercooked meat and not consuming unpasteurized dairy products was provided most often. Information about not sharing eating utensils with small children and thoroughly reheating all ready-to-eat foods were rarely provided. More information was provided when the client was a primigravidae or the consultation lasted longer than 50min. CONCLUSION: Information on infectious disease prevention given to pregnant women by primary care midwives was insufficient; especially for cytomegalovirus prevention. PRACTICE IMPLICATIONS: A guideline for professionals on preventable infectious diseases may be useful to inform pregnant women properly.


Assuntos
Infecções por Citomegalovirus/prevenção & controle , Conhecimentos, Atitudes e Prática em Saúde , Listeriose/prevenção & controle , Enfermeiros Obstétricos , Complicações Infecciosas na Gravidez/prevenção & controle , Cuidado Pré-Natal/métodos , Toxoplasmose/prevenção & controle , Adulto , Feminino , Humanos , Países Baixos , Educação de Pacientes como Assunto , Gravidez , Gestantes/psicologia , Atenção Primária à Saúde/métodos , Encaminhamento e Consulta , Análise de Regressão , Inquéritos e Questionários , Gravação em Vídeo , Adulto Jovem
18.
J Biomech ; 47(9): 2115-21, 2014 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-24377681

RESUMO

The objective of this study was to investigate how joint specific biomechanical loading influences the functional development and phenotypic stability of cartilage grafts engineered in vitro using stem/progenitor cells isolated from different source tissues. Porcine bone marrow derived multipotent stromal cells (BMSCs) and infrapatellar fat pad derived multipotent stromal cells (FPSCs) were seeded in agarose hydrogels and cultured in chondrogenic medium, while simultaneously subjected to 10MPa of cyclic hydrostatic pressure (HP). To mimic the endochondral phenotype observed in vivo with cartilaginous tissues engineered using BMSCs, the culture media was additionally supplemented with hypertrophic factors, while the loss of phenotype observed in vivo with FPSCs was induced by withdrawing transforming growth factor (TGF)-ß3 from the media. The application of HP was found to enhance the functional development of cartilaginous tissues engineered using both BMSCs and FPSCs. In addition, HP was found to suppress calcification of tissues engineered using BMSCs cultured in chondrogenic conditions and acted to maintain a chondrogenic phenotype in cartilaginous grafts engineered using FPSCs. The results of this study point to the importance of in vivo specific mechanical cues for determining the terminal phenotype of chondrogenically primed multipotent stromal cells. Furthermore, demonstrating that stem or progenitor cells will appropriately differentiate in response to such biophysical cues might also be considered as an additional functional assay for evaluating their therapeutic potential.


Assuntos
Tecido Adiposo/citologia , Células da Medula Óssea/citologia , Cartilagem , Células Estromais/citologia , Engenharia Tecidual , Animais , Diferenciação Celular , Células Cultivadas , Condrogênese , Pressão Hidrostática , Fenótipo , Suínos
19.
Catheter Cardiovasc Interv ; 84(3): E18-20, 2014 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-24375849

RESUMO

A 66-year old man presented with antero-lateral STEMI. An ulcerated plaque and thrombus were seen in the proximal LAD. We were unable to pass a thrombectomy catheter down the LAD. To avoid embolisation of debris a Spider FX distal protection device was placed into the circumflex artery. Following stent implantation the patient developed chest pain with inferolateral ST depression. Thrombus was extracted from the circumflex artery within the distal protection device. Noninfract related artery distal protection during primary PCI may be an appropriate safeguard where thrombectomy is not possible in an infarct-related left coronary branch.


Assuntos
Trombose Coronária/prevenção & controle , Dispositivos de Proteção Embólica , Complicações Intraoperatórias/prevenção & controle , Infarto do Miocárdio/cirurgia , Intervenção Coronária Percutânea/métodos , Idoso , Angiografia Coronária , Trombose Coronária/cirurgia , Eletrocardiografia , Seguimentos , Humanos , Masculino , Infarto do Miocárdio/diagnóstico , Trombectomia
20.
Oncogene ; 33(34): 4316-29, 2014 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-24362530

RESUMO

The forkhead box transcription factor FOXM1 is an essential effector of G2/M-phase transition, mitosis and the DNA damage response. As such, it is frequently deregulated during tumorigenesis. Here we report that FOXM1 is dynamically modified by SUMO1 but not by SUMO2/3 at multiple sites. We show that FOXM1 SUMOylation is enhanced in MCF-7 breast cancer cells in response to treatment with epirubicin and mitotic inhibitors. Mutation of five consensus conjugation motifs yielded a SUMOylation-deficient mutant FOXM1. Conversely, fusion of the E2 ligase Ubc9 to FOXM1 generated an auto-SUMOylating mutant (FOXM1-Ubc9). Analysis of wild-type FOXM1 and mutants revealed that SUMOylation inhibits FOXM1 activity, promotes translocation to the cytoplasm and enhances APC/Cdh1-mediated ubiquitination and degradation. Further, expression of the SUMOylation-deficient mutant enhanced cell proliferation compared with wild-type FOXM1, whereas the FOXM1-Ubc9 fusion protein resulted in persistent cyclin B1 expression and slowed the time from mitotic entry to exit. In summary, our findings suggest that SUMOylation attenuates FOXM1 activity and causes mitotic delay in cytotoxic drug response.


Assuntos
Fatores de Transcrição Forkhead/metabolismo , Mitose , Proteína SUMO-1/metabolismo , Sumoilação , Antibióticos Antineoplásicos/farmacologia , Antígenos CD , Sítios de Ligação , Caderinas/metabolismo , Proliferação de Células/efeitos dos fármacos , Citoplasma/metabolismo , Resistencia a Medicamentos Antineoplásicos , Epirubicina/farmacologia , Proteína Forkhead Box M1 , Pontos de Checagem da Fase G2 do Ciclo Celular , Células HeLa , Humanos , Células MCF-7 , Nocodazol/farmacologia , Transporte Proteico , Proteólise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...