Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Neurol ; 12: 684102, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34220690

RESUMO

Background: Gait and balance difficulties are among the most common clinical manifestations in adults with X-linked adrenoleukodystrophy, but little is known about the contributions of sensory loss, motor dysfunction, and postural control to gait dysfunction and fall risk. Objective: To quantify gait and balance deficits in both males and females with adrenoleukodystrophy and evaluate how environmental perturbations (moving surfaces and visual surrounds) affect balance and fall risk. Methods: We assessed sensory and motor contributions to gait and postural instability in 44 adult patients with adrenoleukodystrophy and 17 healthy controls using three different functional gait assessments (25 Foot Walk test, Timed Up and Go, and 6 Minute Walk test) and computerized dynamic posturography. Results: The median Expanded Disability Status Scale score for the patient cohort was 3.0 (range 0.0-6.5). Both males and females with adrenoleukodystrophy showed impairments on all three functional gait assessments relative to controls (P < 0.001). Performance on walking tests and Expanded Disability Status Scale scores correlated with incidence of falls on computerized dynamic posturography, with the 25 Foot Walk being a moderately reliable predictor of fall risk (area under the ROC curve = 0.7675, P = 0.0038). Conclusion: We demonstrate that gait difficulties and postural control deficits occur in patients with adrenoleukodystrophy, albeit at an older age in females. Postural deficits were aggravated by eyes closed and dynamic conditions that rely on vestibular input, revealing challenges to the interplay of motor, sensory and vestibular circuitry in adrenoleukodystrophy.

2.
Nature ; 493(7432): 398-401, 2013 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-23302802

RESUMO

Understanding the links between long-term biological evolution, the ocean-atmosphere system and plate tectonics is a central goal of Earth science. Although environmental perturbations of many different kinds are known to have affected long-term biological evolution, particularly during major mass extinction events, the relative importance of physical environmental factors versus biological interactions in governing rates of extinction and origination through geological time remains unknown. Here we use macrostratigraphic data from the Atlantic Ocean basin to show that changes in global species diversity and rates of extinction among planktonic foraminifera have been linked to tectonically and climatically forced changes in ocean circulation and chemistry from the Jurassic period to the present. Transient environmental perturbations, such as those that occurred after the asteroid impact at the end of the Cretaceous period approximately 66 million years ago, and the Eocene/Oligocene greenhouse-icehouse transition approximately 34 million years ago, are superimposed on this general long-term relationship. Rates of species origination, by contrast, are not correlated with corresponding macrostratigraphic quantities, indicating that physiochemical changes in the ocean-atmosphere system affect evolution principally by driving the synchronous extinction of lineages that originated owing to more protracted and complex interactions between biological and environmental factors.


Assuntos
Biodiversidade , Mudança Climática , Extinção Biológica , Foraminíferos/fisiologia , Plâncton/fisiologia , Oceano Atlântico , Atmosfera/química , Sedimentos Geológicos , Oceanografia , Água do Mar/química
3.
Philos Trans A Math Phys Eng Sci ; 365(1856): 1829-42, 2007 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-17513259

RESUMO

The Palaeocene-Eocene thermal maximum (PETM) is characterized by a global negative carbon isotope excursion (CIE) and widespread dissolution of seafloor carbonate sediments. The latter feature supports the hypothesis that the PETM and CIE were caused by the rapid release of a large mass (greater than 2000Gt C) of 12C-enriched carbon. The source of this carbon, however, remains a mystery. Possible sources include volcanically driven thermal combustion of organic-rich sediment, dissociation of seafloor methane hydrates and desiccation and oxidation of soil/sediment organics. A key constraint on the source(s) is the rate at which the carbon was released. Fast rates would be consistent with a catastrophic event, e.g. massive methane hydrate dissociation, whereas slower rates might implicate other processes. The PETM carbon flux is currently constrained by high-resolution marine and terrestrial records of the CIE. In pelagic bulk carbonate records, the onset of the CIE is often expressed as a single- or multiple-step excursion extending over 10(4) years. Individual planktonic shell records, in contrast, always show a single-step CIE, with either pre-excursion or excursion isotope values, but no transition values. Benthic foraminifera records, which are less complete owing to extinction and diminutive assemblages, show a delayed excursion. Here, we compile and evaluate the individual planktonic shell isotope data from several localities. We find that the most expanded records consistently show a bimodal isotope distribution pattern regardless of location, water depth or depositional facies. This suggests one of several possibilities: (i) the isotopic composition of the surface ocean/atmosphere declined in a geologic instant (<500yr), (ii) that during the onset of the CIE, most shells of mixed-layer planktonic foraminifera were dissolved, or (iii) the abundances or shell production of these species temporarily declined, possibly due to initial pH changes.


Assuntos
Isótopos de Carbono , Efeito Estufa , Plâncton , Animais , Dióxido de Carbono , Fósseis , New Jersey , Oceanos e Mares
4.
Science ; 308(5728): 1611-5, 2005 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-15947184

RESUMO

The Paleocene-Eocene thermal maximum (PETM) has been attributed to the rapid release of approximately 2000 x 10(9) metric tons of carbon in the form of methane. In theory, oxidation and ocean absorption of this carbon should have lowered deep-sea pH, thereby triggering a rapid (<10,000-year) shoaling of the calcite compensation depth (CCD), followed by gradual recovery. Here we present geochemical data from five new South Atlantic deep-sea sections that constrain the timing and extent of massive sea-floor carbonate dissolution coincident with the PETM. The sections, from between 2.7 and 4.8 kilometers water depth, are marked by a prominent clay layer, the character of which indicates that the CCD shoaled rapidly (<10,000 years) by more than 2 kilometers and recovered gradually (>100,000 years). These findings indicate that a large mass of carbon (>>2000 x 10(9) metric tons of carbon) dissolved in the ocean at the Paleocene-Eocene boundary and that permanent sequestration of this carbon occurred through silicate weathering feedback.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...