Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 62(26): 10317-10328, 2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37326623

RESUMO

Frustrated lanthanide oxides are promising candidates for cryogen-free magnetic refrigeration due to their suppressed ordering temperatures and high magnetic moments. While much attention has been paid to the garnet and pyrochlore lattices, the magnetocaloric effect in frustrated face-centered cubic (fcc) lattices remains relatively unexplored. We previously showed that the frustrated fcc double perovskite Ba2GdSbO6 is a top-performing magnetocaloric material (per mol Gd) because of its small nearest-neighbor interaction between spins. Here we investigate different tuning parameters to maximize the magnetocaloric effect in the family of fcc lanthanide oxides, A2LnSbO6 (A = {Ba2+, Sr2+} and Ln = {Nd3+, Tb3+, Gd3+, Ho3+, Dy3+, Er3+}), including chemical pressure via the A site cation and the magnetic ground state via the lanthanide ion. Bulk magnetic measurements indicate a possible trend between magnetic short-range fluctuations and the field-temperature phase space of the magnetocaloric effect, determined by whether an ion is a Kramers or a non-Kramers ion. We report for the first time on the synthesis and magnetic characterization of the Ca2LnSbO6 series with tunable site disorder that can be used to control the deviations from Curie-Weiss behavior. Taken together, these results suggest fcc lanthanide oxides as tunable systems for magnetocaloric design.

2.
Chem Mater ; 34(7): 3440-3450, 2022 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-35572784

RESUMO

Frustrated lanthanide oxides with dense magnetic lattices are of fundamental interest for their potential in cryogenic refrigeration due to a large ground state entropy and suppressed ordering temperatures but can often be limited by short-range correlations. Here, we present examples of frustrated fcc oxides, Ba2GdSbO6 and Sr2GdSbO6, and the new site-disordered analogue Ca2GdSbO6 ([CaGd] A [CaSb] B O6), in which the magnetocaloric effect is influenced by minimal superexchange (J 1 ∼ 10 mK). We report on the crystal structures using powder X-ray diffraction and the bulk magnetic properties through low-field susceptibility and isothermal magnetization measurements. The Gd compounds exhibit a magnetic entropy change of up to -15.8 J/K/molGd in a field of 7 T at 2 K, a 20% excess compared to the value of -13.0 J/K/molGd for a standard in magnetic refrigeration, Gd3Ga5O12. Heat capacity measurements indicate a lack of magnetic ordering down to 0.4 K for Ba2GdSbO6 and Sr2GdSbO6, suggesting cooling down through the liquid 4-He regime. A mean-field model is used to elucidate the role of primarily free-spin behavior in the magnetocaloric performance of these compounds in comparison to other top-performing Gd-based oxides. The chemical flexibility of the double perovskites raises the possibility of further enhancement of the magnetocaloric effect in the Gd3+ fcc lattices.

3.
Dalton Trans ; 50(33): 11376-11379, 2021 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-34397063

RESUMO

Intercalation of lithium and ammonia into the layered semiconductor Bi2Se3 proceeds via a hyperextended (by >60%) ammonia-rich intercalate, to eventually produce a layered compound with lithium amide intercalated between the bismuth selenide layers which offers scope for further chemical manipulation.

4.
J Phys Chem C Nanomater Interfaces ; 125(27): 15025-15034, 2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-34295448

RESUMO

Band gap tuning of hybrid metal-halide perovskites by halide substitution holds promise for tailored light absorption in tandem solar cells and emission in light-emitting diodes. However, the impact of halide substitution on the crystal structure and the fundamental mechanism of photo-induced halide segregation remain open questions. Here, using a combination of temperature-dependent X-ray diffraction and calorimetry measurements, we report the emergence of a disorder- and frustration-driven orientational glass for a wide range of compositions in CH3NH3Pb(Cl x Br1-x )3. Using temperature-dependent photoluminescence measurements, we find a correlation between halide segregation under illumination and local strains from the orientational glass. We observe no glassy behavior in CsPb(Cl x Br1-x )3, highlighting the importance of the A-site cation for the structure and optoelectronic properties. Using first-principles calculations, we identify the local preferential alignment of the organic cations as the glass formation mechanism. Our findings rationalize the superior photostability of mixed-cation metal-halide perovskites and provide guidelines for further stabilization strategies.

5.
Dalton Trans ; 49(44): 15914-15924, 2020 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-33166378

RESUMO

IL@MOF (IL: ionic liquid; MOF: metal-organic framework) materials have been proposed as a candidate for solid-state electrolytes, combining the inherent non-flammability and high thermal and chemical stability of the ionic liquid with the host-guest interactions of the MOF. In this work, we compare the structure and ionic conductivity of a sodium ion containing IL@MOF composite formed from a microcrystalline powder of the zeolitic imidazolate framework (ZIF), ZIF-8 with a hierarchically porous sample of ZIF-8 containing both micro- and mesopores from a sol-gel synthesis. Although the crystallographic structures were shown to be the same by X-ray diffraction, significant differences in particle size, packing and morphology were identified by electron microscopy techniques which highlight the origins of the hierarchical porosity. After incorporation of Na0.1EMIM0.9TFSI (abbreviated to NaIL; EMIM = 1-ethyl-3-methylimidazolium; TFSI = bis(trifluoromethylsulfonyl)imide), the hierarchically porous composite exhibited a 40% greater filling capacity than the purely microporous sample which was confirmed by elemental analysis and digestive proton NMR. Finally, the ionic conductivity properties of the composite materials were probed by electrochemical impedance spectroscopy. The results showed that despite the 40% increased loading of NaIL in the NaIL@ZIF-8micro sample, the ionic conductivities at 25 °C were 8.4 × 10-6 and 1.6 × 10-5 S cm-1 for NaIL@ZIF-8meso and NaIL@ZIF-8micro respectively. These results exemplify the importance of the long range, continuous ion pathways contributed by the microcrystalline pores, as well as the limited contribution from the discontinuous mesopores to the overall ionic conductivity.

6.
Inorg Chem ; 59(13): 9188-9195, 2020 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-32525304

RESUMO

This study examines the lanthanide calcium oxyborates Ca4LnO(BO3)3 (Ln = La, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Y, Er, Yb). The reported monoclinic structure (space group Cm) was confirmed using powder X-ray diffraction. The magnetic Ln3+ ions are situated in well-separated chains parallel to the c axis in a quasi-one-dimensional array. Here we report the first bulk magnetic characterization of Ca4LnO(BO3)3 using magnetic susceptibility χ(T) and isothermal magnetization M(H) measurements at T ≥ 2 K. With the sole exception of Ca4TbO(BO3)3, which displays a transition at T = 3.6 K, no magnetic transitions occur above 2 K, and Curie-Weiss analysis indicates antiferromagnetic nearest-neighbor interactions for all samples. Calculation of the magnetic entropy change ΔSm indicates that Ca4GdO(BO3)3 and Ca4HoO(BO3)3 are viable magnetocaloric materials at liquid helium temperatures in the high-field and low-field regimes, respectively.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...