Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Exp Orthop ; 8(1): 61, 2021 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-34392435

RESUMO

PURPOSE: One of the major contributors to the progression of knee osteoarthritis (OA) is the condition of loading in the knee joint. Innovatively designed load-sharing implants may be effective in terms of reducing joint load. The effects of these implants on contact joint mechanics can be evaluated through cadaver experiments. In this work, a case study is carried out with cadaver knee specimens to carry out a preliminary investigation into a novel load-sharing knee implant, in particular to study the surgical procedures required for attachment, and to determine the contact pressures in the joint with and without the implant. METHODS: Contact pressure in the tibiofemoral joint was measured using pressure mapping sensors, with and without the implant, and radiographs were conducted to investigate the influence of the implant on joint space. The implant was designed from a 3D model of the specimen reconstructed by segmenting MR images of the knee, and it was manufactured by CNC machining. RESULTS: It was observed that attachment of the implant does not affect the geometry of the hard/soft tissues. Radiographs showed that the implant led to an increase in the joint space on the medial side. Contact pressure measurements showed that the implant reduced the load on the medial side by approximately 18% under all tested loading conditions. By increasing the load from 800 to 1600 N, the percentage of load reduction in the lateral side was decreased by 8%. After applying 800, 1200, and 1600 N load it was observed that the peak contact pressures were 3.7, 4.6, and 5.5 MPa, respectively. CONCLUSIONS: This new knee implant shows some promise as a treatment for OA, through its creation of a conducive loading environment in the knee joint, without sacrificing or damaging any of the hard or soft tissues. This device could be as effective as, for example, the Atlas® system, but without some complications seen with other devices; this would need to be validated through similar results being observed in an appropriate in vivo study.

2.
Comput Methods Biomech Biomed Engin ; 23(4): 143-154, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31928215

RESUMO

Osteoarthritis (OA) is a commonly occurring cartilage degenerative disease. The end stage treatment is Total Knee Arthroplasty (TKA), which can be costly in terms of initial surgery, but also in terms of revision knee arthroplasty, which is quite often required. A novel conceptual knee implant has been proposed to function as a reducer of stress across the joint surface, to extend the period of time before TKA becomes necessary. The objective of this paper is to develop a computational model which can be used to assess the wear arising at the implant articulating surfaces. Experimental wear coefficients were determined from physical testing, the results of which were verified using a semi-analytical model. Experimental results were incorporated into an anatomically correct computational model of the knee and implant. The wear-rate predicted for the implant was 27.74 mm3 per million cycles (MC) and the wear depth predicted was 1.085 mm/MC. Whereas the wear-rate is comparable to that seen in conventional knee implants, the wear depth is significantly higher than for conventional knee prostheses, and indicates that, in order to be viable, wear-rates should be reduced in some way, perhaps by using low-wear polymers.


Assuntos
Simulação por Computador , Prótese do Joelho , Análise de Elementos Finitos , Humanos , Articulação do Joelho/cirurgia , Teste de Materiais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...