Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 299(9): 105148, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37567474

RESUMO

Mutations in sterile alpha motif domain and histidine-aspartate domain-containing protein 1 (SAMHD1) are found in a neurodevelopmental disorder, Aicardi-Goutières syndrome, and cancers, and SAMHD1, which is a deoxynucleoside triphosphate (dNTP) triphosphorylase, was identified as a myeloid-specific HIV-1 restriction factor. Here, we characterized the enzymology and structure of an SAMHD1 ortholog of Caenorhabditis elegans, ZK177.8, which also reportedly induces developmental defects upon gene knockdown. We found ZK177.8 protein is a dNTPase allosterically regulated by dGTP. The active site of ZK177.8 recognizes both 2' OH and triphosphate moieties of dNTPs but not base moiety. The dGTP activator induces the formation of the enzymatically active ZK177.8 tetramers, and ZK177.8 protein lowers cellular dNTP levels in a human monocytic cell line. Finally, ZK177.8 tetramers display very similar X-ray crystal structure with human and mouse SAMHD1s except that its lack of the canonical sterile alpha motif domain. This striking conservation in structure, function, and allosteric regulatory mechanism for the hydrolysis of the DNA building blocks supports their host developmental roles.

2.
Genetics ; 220(1)2022 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-34788833

RESUMO

The dynein motor complex is thought to aid in homolog pairing in many organisms by moving chromosomes within the nuclear periphery to promote and test homologous interactions. This precedes synaptonemal complex (SC) formation during homolog synapsis, which stabilizes homolog proximity during recombination. We observed that depletion of the dynein light chain (DLC-1) in Caenorhabditis elegans irreversibly prevents synapsis, causing an increase in off-chromatin formation of SC protein foci with increasing temperature. This requirement for DLC-1 is independent of its function in dynein motors, as SYP protein foci do not form with depletion of other dynein motor components. In contrast to normal SC-related structures, foci formed with DLC-1 depletion are resistant to dissolution with 1,6-hexanediol, similar to aggregates of SC proteins formed in high growth temperatures. Dynein light chains have been shown to act as hub proteins that interact with other proteins through a conserved binding motif. We identified a similar DLC-1 binding motif in the C. elegans SC protein SYP-2, and mutation of the putative motif causes meiosis defects that are exacerbated by elevated temperatures. We propose that DLC-1 acts as a pre-synapsis chaperone-like factor for SYP proteins to help regulate their self-association prior to the signals for SC assembly, a role that is revealed by its increased essentiality at elevated temperatures.


Assuntos
Caenorhabditis elegans , Animais
3.
PLoS Genet ; 13(5): e1006821, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28562665

RESUMO

[This corrects the article DOI: 10.1371/journal.pgen.1006227.].

4.
PLoS One ; 12(5): e0177473, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28498828

RESUMO

The proper regulation of spermatogenesis is crucial to ensure the continued production of sperm and fertility. Here, we investigated the function of the H3K4me2 demethylase KDM1A/LSD1 during spermatogenesis in developing and adult mice. Conditional deletion of Kdm1a in the testis just prior to birth leads to fewer spermatogonia and germ cell loss before 3 weeks of age. These results demonstrate that KDM1A is required for spermatogonial differentiation, as well as germ cell survival, in the developing testis. In addition, inducible deletion of Kdm1a in the adult testis results in the abnormal accumulation of meiotic spermatocytes, as well as apoptosis and progressive germ cell loss. These results demonstrate that KDM1A is also required during adult spermatogenesis. Furthermore, without KDM1A, the stem cell factor OCT4 is ectopically maintained in differentiating germ cells. This requirement for KDM1A is similar to what has been observed in other stem cell populations, suggesting a common function. Taken together, we propose that KDM1A is a key regulator of spermatogenesis and germ cell maintenance in the mouse.


Assuntos
Diferenciação Celular/genética , Histona Desmetilases/metabolismo , Espermatogênese/genética , Espermatogônias/citologia , Espermatogônias/metabolismo , Animais , Apoptose/genética , Apoptose/fisiologia , Sobrevivência Celular/genética , Sobrevivência Celular/fisiologia , Histona Desmetilases/genética , Masculino , Camundongos , Espermatozoides/citologia , Espermatozoides/metabolismo , Células-Tronco/citologia , Células-Tronco/metabolismo , Testículo/citologia , Testículo/metabolismo
5.
PLoS Genet ; 12(8): e1006227, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27541139

RESUMO

The elongation phase of transcription by RNA Polymerase II (Pol II) involves numerous events that are tightly coordinated, including RNA processing, histone modification, and chromatin remodeling. RNA splicing factors are associated with elongating Pol II, and the interdependent coupling of splicing and elongation has been documented in several systems. Here we identify a conserved, multi-domain cyclophilin family member, SIG-7, as an essential factor for both normal transcription elongation and co-transcriptional splicing. In embryos depleted for SIG-7, RNA levels for over a thousand zygotically expressed genes are substantially reduced, Pol II becomes significantly reduced at the 3' end of genes, marks of transcription elongation are reduced, and unspliced mRNAs accumulate. Our findings suggest that SIG-7 plays a central role in both Pol II elongation and co-transcriptional splicing and may provide an important link for their coordination and regulation.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Ciclofilinas/genética , Desenvolvimento Embrionário/genética , RNA Polimerase II/genética , Transcrição Gênica , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/crescimento & desenvolvimento , Ciclofilinas/biossíntese , Embrião não Mamífero , Regulação da Expressão Gênica no Desenvolvimento , Íntrons/genética , Fosforilação , Interferência de RNA , Splicing de RNA/genética
6.
Dev Cell ; 31(2): 142-4, 2014 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-25373774

RESUMO

Epigenetic memory stably maintains and transmits information during genome replication. Recently in Science, Gaydos et al. (2014) show that repressive chromatin marks exhibit transgenerational stability in the absence of chromatin-modifying enzymes in Caenorhabditis elegans, in contrast to work in flies suggesting that such proteins mediate stable inheritance of epigenetic modifications.


Assuntos
Proteínas de Caenorhabditis elegans/antagonistas & inibidores , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/embriologia , Caenorhabditis elegans/genética , Metilação de DNA , Epigênese Genética , Regulação da Expressão Gênica no Desenvolvimento , Células Germinativas/metabolismo , Histona Desmetilases/metabolismo , Complexo Repressor Polycomb 2/antagonistas & inibidores , Complexo Repressor Polycomb 2/metabolismo , Cromossomo X/genética , Animais , Masculino
7.
Nucleus ; 5(3): 224-36, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24879308

RESUMO

The transition between initiation and productive elongation during RNA Polymerase II (Pol II) transcription is a well-appreciated point of regulation across many eukaryotes. Elongating Pol II is modified by phosphorylation of serine 2 (Ser2) on its carboxy terminal domain (CTD) by two kinases, Bur1/Ctk1 in yeast and Cdk9/Cdk12 in metazoans. Here, we discuss the roles and regulation of these kinases and their relationship to Pol II elongation control, and focus on recent data from work in C. elegans that point out gaps in our current understand of transcription elongation.


Assuntos
Quinase 9 Dependente de Ciclina/metabolismo , Quinases Ciclina-Dependentes/metabolismo , Fosforilação/genética , RNA Polimerase II/metabolismo , Serina/metabolismo , Transcrição Gênica/genética , Animais , Humanos
8.
Epigenetics Chromatin ; 7(1): 6, 2014 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-24678826

RESUMO

Epigenetic mechanisms create variably stable changes in gene expression through the establishment of heritable states of chromatin architecture. While many epigenetic phenomena are, by definition, heritably passed through cell division during animal and plant development, evidence suggests that 'epigenetic states' may also be inherited across multiple generations. Work in the nematode Caenorhabditis elegans has uncovered a number of mechanisms that participate in regulating the transgenerational passage of epigenetic states. These mechanisms include some that establish and maintain heritable epigenetic information in the form of histone modifications, as well as those that filter the epigenetic information that is stably transmitted. The information appears to influence and help guide or regulate gene activity and repression in subsequent generations. Genome surveillance mechanisms guided by small RNAs appear to be involved in identifying and directing heritable repression of genomic elements, and thus may participate in filtering information that is inappropriate for stable transmission. This review will attempt to summarize recent findings that illustrate this simple nematode to be a truly elegant resource for defining emerging biological paradigms.As the cell lineage that links generations, the germline is the carrier of both genetic and epigenetic information. Like genetic information, information in the epigenome can heritably affect gene regulation and phenotype; yet unlike genetic information, the epigenome of the germ lineage is highly modified within each generation. Despite such alterations, some epigenetic information is highly stable across generations, leading to transgenerationally stable phenotypes that are unlinked to genetic changes. Studies in the nematode C. elegans have uncovered mechanisms that contribute to transgenerational repression as well as to the expression of genes that rely on histone modifying machinery and/or non-coding RNA-based mechanisms. These studies indicate that epigenetic mechanisms operating within the germ cell cycle of this organism filter and maintain an epigenetic memory that is required for germ cell function and can also influence gene expression in somatic lineages.

9.
Nucleic Acids Res ; 42(9): 5567-81, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24682813

RESUMO

The hermaphrodite germline of Caenorhabditis elegans initially engages in spermatogenesis and then switches to oogenesis during late stages of larval development. TRA-1, a member of the Ci/Gli family of transcriptional repressors, plays an essential role in this switch by repressing genes that promote spermatogenesis. WDR5 proteins are conserved components of histone methyltransferase complexes normally associated with gene activation. However, two C. elegans WDR5 homologs, wdr-5.1 and wdr-5.2 are redundantly required for normal TRA-1 dependent repression, and this function is independent of their roles in histone methylation. Animals lacking wdr-5.1/wdr-5.2 function fail to switch to oogenesis at 25°C, resulting in a masculinization of germline (Mog) phenotype. The Mog phenotype is caused by ectopic expression of fog-3, a direct target of TRA-1 repression. WDR-5.1 associates with the fog-3 promoter and is required for TRA-1 to bind to fog-3 promoter. Other direct targets of TRA-1 are similarly derepressed in the double mutant. These results show that WDR5 plays a novel and important role in stabilizing transcriptional repression during C. elegans sex determination, and provide evidence that this important protein may operate independently of its established role in histone methyltransferase complexes.


Assuntos
Proteínas de Caenorhabditis elegans/fisiologia , Caenorhabditis elegans/genética , Proteínas de Ligação a DNA/fisiologia , Fatores de Transcrição/fisiologia , Transcrição Gênica , Animais , Caenorhabditis elegans/citologia , Caenorhabditis elegans/crescimento & desenvolvimento , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Epigênese Genética , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Inativação de Genes , Histonas/metabolismo , Masculino , Metilação , Oócitos/fisiologia , Oogênese , Processamento de Proteína Pós-Traducional , Processos de Determinação Sexual , Espermatogênese , Espermatozoides/fisiologia
10.
Artigo em Inglês | MEDLINE | ID: mdl-24591522

RESUMO

Dosage compensation, which regulates the expression of genes residing on the sex chromosomes, has provided valuable insights into chromatin-based mechanisms of gene regulation. The nematode Caenorhabditis elegans has adopted various strategies to down-regulate and even nearly silence the X chromosomes. This article discusses the different chromatin-based strategies used in somatic tissues and in the germline to modulate gene expression from the C. elegans X chromosomes and compares these strategies to those used by other organisms to cope with similar X-chromosome dosage differences.


Assuntos
Caenorhabditis elegans/genética , Mecanismo Genético de Compensação de Dose , Cromossomo X , Animais , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/fisiologia , Feminino , Regulação da Expressão Gênica , Histonas/metabolismo , Masculino , Modelos Genéticos , Processos de Determinação Sexual , Inativação do Cromossomo X
11.
Development ; 140(17): 3703-13, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23903194

RESUMO

RNA polymerase II (Pol II) elongation in metazoans is thought to require phosphorylation of serine 2 (Ser2-P) of the Pol II C-terminal domain (CTD) by the P-TEFb complex, CDK-9/cyclin T. Another Ser2 kinase complex, CDK-12/cyclin K, which requires upstream CDK-9 activity has been identified in Drosophila and human cells. We show that regulation of Ser2-P in C. elegans soma is similar to other metazoan systems, but Ser2-P in the germline is independent of CDK-9, and largely requires only CDK-12. The observed differences are not due to differential tissue expression as both kinases and their cyclin partners are ubiquitously expressed. Surprisingly, loss of CDK-9 from germ cells has little effect on Ser2-P, yet CDK-9 is essential for germline development. By contrast, loss of CDK-12 and Ser2-P specifically from germ cells has little impact on germline development or function, although significant loss of co-transcriptional H3K36 trimethylation is observed. These results show a reduced requirement for Pol II Ser2-P in germline development and suggest that generating Ser2-P is not the essential role of CDK-9 in these cells. Transcriptional elongation in the C. elegans germline thus appears to be uniquely regulated, which may be a novel facet of germline identity.


Assuntos
Caenorhabditis elegans/enzimologia , Células Germinativas/metabolismo , Fator B de Elongação Transcricional Positiva/metabolismo , RNA Polimerase II/metabolismo , Animais , Animais Geneticamente Modificados , Western Blotting , Tamanho da Ninhada , Quinases Ciclina-Dependentes/metabolismo , Microscopia de Fluorescência , Fosforilação , Interferência de RNA , Reação em Cadeia da Polimerase em Tempo Real , Serina/metabolismo
12.
Nat Rev Genet ; 14(3): 228-35, 2013 03.
Artigo em Inglês | MEDLINE | ID: mdl-23416892

RESUMO

Much attention has been given to the idea of transgenerational epigenetic inheritance, but fundamental questions remain regarding how much takes place and the impact that this might have on organisms. We asked five leading researchers in this area--working on a range of model organisms and in human disease--for their views on these topics. Their responses highlight the mixture of excitement and caution that surrounds transgenerational epigenetic inheritance and the wide gulf between species in terms of our knowledge of the mechanisms that may be involved.


Assuntos
Epigênese Genética , Epigenômica , Padrões de Herança/genética , Animais , Modelos Animais de Doenças , Hereditariedade , Humanos
13.
PLoS Genet ; 7(6): e1001391, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21695223

RESUMO

Epigenetic information, such as parental imprints, can be transmitted with genetic information from parent to offspring through the germ line. Recent reports show that histone modifications can be transmitted through sperm as a component of this information transfer. How the information that is transferred is established in the parent and maintained in the offspring is poorly understood. We previously described a form of imprinted X inactivation in Caenorhabditis elegans where dimethylation on histone 3 at lysine 4 (H3K4me2), a mark of active chromatin, is excluded from the paternal X chromosome (Xp) during spermatogenesis and persists through early cell divisions in the embryo. Based on the observation that the Xp (unlike the maternal X or any autosome) is largely transcriptionally inactive in the paternal germ line, we hypothesized that transcriptional activity in the parent germ line may influence epigenetic information inherited by and maintained in the embryo. We report that chromatin modifications and histone variant patterns assembled in the germ line can be retained in mature gametes. Furthermore, despite extensive chromatin remodeling events at fertilization, the modification patterns arriving with the gametes are largely retained in the early embryo. Using transgenes, we observe that expression in the parental germline correlates with differential chromatin assembly that is replicated and maintained in the early embryo. Expression in the adult germ cells also correlates with more robust expression in the somatic lineages of the offspring. These results suggest that differential expression in the parental germ lines may provide a potential mechanism for the establishment of parent-of-origin epigenomic content. This content can be maintained and may heritably affect gene expression in the offspring.


Assuntos
Caenorhabditis elegans/embriologia , Caenorhabditis elegans/genética , Embrião não Mamífero/metabolismo , Epigênese Genética , Células Germinativas/citologia , Animais , Caenorhabditis elegans/metabolismo , Cromatina/metabolismo , Metilação de DNA , Regulação da Expressão Gênica no Desenvolvimento , Células Germinativas/metabolismo , Histonas/genética , Histonas/metabolismo , Masculino
14.
PLoS Genet ; 7(3): e1001349, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21455483

RESUMO

The methylation of lysine 4 of Histone H3 (H3K4me) is an important component of epigenetic regulation. H3K4 methylation is a consequence of transcriptional activity, but also has been shown to contribute to "epigenetic memory"; i.e., it can provide a heritable landmark of previous transcriptional activity that may help promote or maintain such activity in subsequent cell descendants or lineages. A number of multi-protein complexes that control the addition of H3K4me have been described in several organisms. These Set1/MLL or COMPASS complexes often share a common subset of conserved proteins, with other components potentially contributing to tissue-specific or developmental regulation of the methyltransferase activity. Here we show that the normal maintenance of H3K4 di- and tri-methylation in the germ line of Caenorhabditis elegans is dependent on homologs of the Set1/MLL complex components WDR-5.1 and RBBP-5. Different methylation states that are each dependent on wdr-5.1 and rbbp-5 require different methyltransferases. In addition, different subsets of conserved Set1/MLL-like complex components appear to be required for H3K4 methylation in germ cells and somatic lineages at different developmental stages. In adult germ cells, mutations in wdr-5.1 or rbbp-5 dramatically affect both germ line stem cell (GSC) population size and proper germ cell development. RNAi knockdown of RNA Polymerase II does not significantly affect the wdr-5.1-dependent maintenance of H3K4 methylation in either early embryos or adult GSCs, suggesting that the mechanism is not obligately coupled to transcription in these cells. A separate, wdr-5.1-independent mode of H3K4 methylation correlates more directly with transcription in the adult germ line and in embryos. Our results indicate that H3K4 methylation in the germline is regulated by a combination of Set1/MLL component-dependent and -independent modes of epigenetic establishment and maintenance.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans , Epigenômica , Células Germinativas/metabolismo , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Metiltransferases/metabolismo , Proteína de Leucina Linfoide-Mieloide/metabolismo , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Regulação da Expressão Gênica no Desenvolvimento , Genoma Helmíntico/genética , Histonas/metabolismo , Metilação , Metiltransferases/genética , Proteínas Nucleares/metabolismo , Interferência de RNA , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Transcrição Gênica
15.
Epigenetics Chromatin ; 3(1): 15, 2010 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-20704745

RESUMO

BACKGROUND: The processes through which the germline maintains its continuity across generations has long been the focus of biological research. Recent studies have suggested that germline continuity can involve epigenetic regulation, including regulation of histone modifications. However, it is not clear how histone modifications generated in one generation can influence the transcription program and development of germ cells of the next. RESULTS: We show that the histone H3K36 methyltransferase maternal effect sterile (MES)-4 is an epigenetic modifier that prevents aberrant transcription activity in Caenorhabditis elegans primordial germ cells (PGCs). In mes-4 mutant PGCs, RNA Pol II activation is abnormally regulated and the PGCs degenerate. Genetic and genomewide analyses of MES-4-mediated H3K36 methylation suggest that MES-4 activity can operate independently of ongoing transcription, and may be predominantly responsible for maintenance methylation of H3K36 in germline-expressed loci. CONCLUSIONS: Our data suggest a model in which MES-4 helps to maintain an 'epigenetic memory' of transcription that occurred in germ cells of previous generations, and that MES-4 and its epigenetic product are essential for normal germ cell development.

16.
Dev Growth Differ ; 52(6): 527-32, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20646025

RESUMO

Epigenetic mechanisms are thought to help regulate the unique transcription program that is established in germ cell development. During the germline cycle of many organisms, the epigenome undergoes waves of extensive resetting events, while a part of epigenetic modification remains faithful to specific loci. Little is known about the mechanisms underlying these events, how loci are selected for, or avoid, reprogramming, or even why these events are required. In particular, although the significance of genomic imprinting phenomena involving DNA methylation in mammals is now well accepted, the role of histone modification as a transgenerational epigenetic mechanism has been the subject of debate. Such epigenetic mechanisms may help regulate transcription programs and/or the pluripotent status conferred on germ cells, and contribute to germ line continuity across generations. Recent studies provide new evidence for heritability of histone modifications through germ line cells and its potential effects on transcription regulation both in the soma and germ line of subsequent generations. Unraveling transgenerational epigenetic mechanisms involving highly conserved histone modifications in elegant model systems will accelerate the generation of new paradigms and inspire research in a wide variety of fields, including basic developmental studies and clinical stem cell research.


Assuntos
Desenvolvimento Embrionário/fisiologia , Epigênese Genética/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Células Germinativas/citologia , Histonas/metabolismo , Padrões de Herança/genética , Modelos Biológicos , Animais , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/metabolismo , Oxirredutases N-Desmetilantes/metabolismo
17.
PLoS Genet ; 5(8): e1000624, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19714217

RESUMO

Many organisms have a mechanism for down regulating the expression of non-synapsed chromosomes and chromosomal regions during meiosis. This phenomenon is thought to function in genome defense. During early meiosis in Caenorhabditis elegans, unpaired chromosomes (e.g., the male X chromosome) become enriched for a modification associated with heterochromatin and transcriptional repression, dimethylation of histone H3 on lysine 9 (H3K9me2). This enrichment requires activity of the cellular RNA-directed RNA polymerase, EGO-1. Here we use genetic mutation, RNA interference, immunofluorescence microscopy, fluorescence in situ hybridization, and molecular cloning methods to identify and analyze three additional regulators of meiotic H3K9me2 distribution: CSR-1 (a Piwi/PAZ/Argonaute protein), EKL-1 (a Tudor domain protein), and DRH-3 (a DEAH/D-box helicase). In csr-1, ekl-1, and drh-3 mutant males, we observed a reduction in H3K9me2 accumulation on the unpaired X chromosome and an increase in H3K9me2 accumulation on paired autosomes relative to controls. We observed a similar shift in H3K9me2 pattern in hermaphrodites that carry unpaired chromosomes. Based on several assays, we conclude that ectopic H3K9me2 accumulates on paired and synapsed chromosomes in these mutants. We propose alternative models for how a small RNA-mediated pathway may regulate H3K9me2 accumulation during meiosis. We also describe the germline phenotypes of csr-1, ekl-1, and drh-3 mutants. Our genetic data suggest that these factors, together with EGO-1, participate in a regulatory network to promote diverse aspects of development.


Assuntos
Caenorhabditis elegans/metabolismo , Cromossomos/genética , Heterocromatina/metabolismo , Meiose , RNA Interferente Pequeno/genética , Animais , Caenorhabditis elegans/citologia , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , Células Germinativas/citologia , Células Germinativas/metabolismo , Heterocromatina/genética , Histonas/metabolismo , Masculino , Metilação , Interferência de RNA , RNA Interferente Pequeno/metabolismo , RNA Polimerase Dependente de RNA/genética , RNA Polimerase Dependente de RNA/metabolismo
19.
Cell ; 137(2): 308-20, 2009 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-19379696

RESUMO

Epigenetic information undergoes extensive reprogramming in the germline between generations. This reprogramming may be essential to establish a developmental ground state in the zygote. We show that mutants in spr-5, the Caenorhabditis elegans ortholog of the H3K4me2 demethylase LSD1/KDM1, exhibit progressive sterility over many generations. This sterility correlates with the misregulation of spermatogenesis-expressed genes and transgenerational accumulation of the histone modification dimethylation of histone H3 on lysine 4 (H3K4me2). This suggests that H3K4me2 can serve as a stable epigenetic memory, and that erasure of H3K4me2 by LSD/KDM1 in the germline prevents the inappropriate transmission of this epigenetic memory from one generation to the next. Thus, our results provide direct mechanistic insights into the processes that are required for epigenetic reprogramming between generations.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/embriologia , Caenorhabditis elegans/genética , Epigênese Genética , Células Germinativas/citologia , Células Germinativas/metabolismo , Animais , Caenorhabditis elegans/citologia , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Infertilidade , Análise em Microsséries , Mutação , Oogênese , Oxirredutases N-Desmetilantes , Espermatogênese
20.
PLoS Genet ; 4(9): e1000187, 2008 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-18787694

RESUMO

In all eukaryotes, histone variants are incorporated into a subset of nucleosomes to create functionally specialized regions of chromatin. One such variant, H2A.Z, replaces histone H2A and is required for development and viability in all animals tested to date. However, the function of H2A.Z in development remains unclear. Here, we use ChIP-chip, genetic mutation, RNAi, and immunofluorescence microscopy to interrogate the function of H2A.Z (HTZ-1) during embryogenesis in Caenorhabditis elegans, a key model of metazoan development. We find that HTZ-1 is expressed in every cell of the developing embryo and is essential for normal development. The sites of HTZ-1 incorporation during embryogenesis reveal a genome wrought by developmental processes. HTZ-1 is incorporated upstream of 23% of C. elegans genes. While these genes tend to be required for development and occupied by RNA polymerase II, HTZ-1 incorporation does not specify a stereotypic transcription program. The data also provide evidence for unexpectedly widespread independent regulation of genes within operons during development; in 37% of operons, HTZ-1 is incorporated upstream of internally encoded genes. Fewer sites of HTZ-1 incorporation occur on the X chromosome relative to autosomes, which our data suggest is due to a paucity of developmentally important genes on X, rather than a direct function for HTZ-1 in dosage compensation. Our experiments indicate that HTZ-1 functions in establishing or maintaining an essential chromatin state at promoters regulated dynamically during C. elegans embryogenesis.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/embriologia , Caenorhabditis elegans/genética , Genoma Helmíntico , Histonas/genética , Animais , Caenorhabditis elegans/crescimento & desenvolvimento , Proteínas de Caenorhabditis elegans/metabolismo , Mecanismo Genético de Compensação de Dose , Desenvolvimento Embrionário/genética , Feminino , Imunofluorescência , Histonas/metabolismo , Modelos Genéticos , Óperon/genética , Regiões Promotoras Genéticas , Interferência de RNA , RNA Polimerase II/metabolismo , Sítio de Iniciação de Transcrição , Cromossomo X/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...