Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(16)2023 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-37631824

RESUMO

For many years, energy monitoring at the most disaggregate level has been mainly sought through the idea of Non-Intrusive Load Monitoring (NILM). Developing a practical application of this concept in the residential sector can be impeded by the technical characteristics of case studies. Accordingly, several databases, mainly from Europe and the US, have been publicly released to enable basic research to address NILM issues raised by their challenging features. Nevertheless, the resultant enhancements are limited to the properties of these datasets. Such a restriction has caused NILM studies to overlook residential scenarios related to geographically-specific regions and existent practices to face unexplored situations. This paper presents applied research on NILM in Quebec residences to reveal its barriers to feasible implementations. It commences with a concise discussion about a successful NILM idea to highlight its essential requirements. Afterward, it provides a comparative statistical analysis to represent the specificity of the case study by exploiting real data. Subsequently, this study proposes a combinatory approach to load identification that utilizes the promise of sub-meter smart technologies and integrates the intrusive aspect of load monitoring with the non-intrusive one to alleviate NILM difficulties in Quebec residences. A load disaggregation technique is suggested to manifest these complications based on supervised and unsupervised machine learning designs. The former is aimed at extracting overall heating demand from the aggregate one while the latter is designed for disaggregating the residual load. The results demonstrate that geographically-dependent cases create electricity consumption scenarios that can deteriorate the performance of existing NILM methods. From a realistic standpoint, this research elaborates on critical remarks to realize viable NILM systems, particularly in Quebec houses.


Assuntos
Eletricidade , Calefação , Quebeque , Bases de Dados Factuais , Europa (Continente)
2.
Sensors (Basel) ; 20(22)2020 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-33203155

RESUMO

Perception is a vital part of driving. Every year, the loss in visibility due to snow, fog, and rain causes serious accidents worldwide. Therefore, it is important to be aware of the impact of weather conditions on perception performance while driving on highways and urban traffic in all weather conditions. The goal of this paper is to provide a survey of sensing technologies used to detect the surrounding environment and obstacles during driving maneuvers in different weather conditions. Firstly, some important historical milestones are presented. Secondly, the state-of-the-art automated driving applications (adaptive cruise control, pedestrian collision avoidance, etc.) are introduced with a focus on all-weather activity. Thirdly, the most involved sensor technologies (radar, lidar, ultrasonic, camera, and far-infrared) employed by automated driving applications are studied. Furthermore, the difference between the current and expected states of performance is determined by the use of spider charts. As a result, a fusion perspective is proposed that can fill gaps and increase the robustness of the perception system.

3.
J Neuroeng Rehabil ; 10(1): 58, 2013 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-23773851

RESUMO

BACKGROUND: Many people with mobility impairments, who require the use of powered wheelchairs, have difficulty completing basic maneuvering tasks during their activities of daily living (ADL). In order to provide assistance to this population, robotic and intelligent system technologies have been used to design an intelligent powered wheelchair (IPW). This paper provides a comprehensive overview of the design and validation of the IPW. METHODS: The main contributions of this work are three-fold. First, we present a software architecture for robot navigation and control in constrained spaces. Second, we describe a decision-theoretic approach for achieving robust speech-based control of the intelligent wheelchair. Third, we present an evaluation protocol motivated by a meaningful clinical outcome, in the form of the Robotic Wheelchair Skills Test (RWST). This allows us to perform a thorough characterization of the performance and safety of the system, involving 17 test subjects (8 non-PW users, 9 regular PW users), 32 complete RWST sessions, 25 total hours of testing, and 9 kilometers of total running distance. RESULTS: User tests with the RWST show that the navigation architecture reduced collisions by more than 60% compared to other recent intelligent wheelchair platforms. On the tasks of the RWST, we measured an average decrease of 4% in performance score and 3% in safety score (not statistically significant), compared to the scores obtained with conventional driving model. This analysis was performed with regular users that had over 6 years of wheelchair driving experience, compared to approximately one half-hour of training with the autonomous mode. CONCLUSIONS: The platform tested in these experiments is among the most experimentally validated robotic wheelchairs in realistic contexts. The results establish that proficient powered wheelchair users can achieve the same level of performance with the intelligent command mode, as with the conventional command mode.


Assuntos
Inteligência Artificial , Robótica/instrumentação , Software , Cadeiras de Rodas , Adulto , Idoso , Idoso de 80 Anos ou mais , Pessoas com Deficiência/reabilitação , Desenho de Equipamento , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Resultado do Tratamento , Interface Usuário-Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...