Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 25(2): 1014-1022, 2023 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-36533703

RESUMO

CO oxidation is fundamental to the development of new catalyst materials for fuel cells and key for complete oxidation of small alcohols like methanol or ethanol on Pt catalysts. So far, room-temperature ionic liquids (RTIL) have been used to modify the selectivity and activity in electrocatalysis. In order to understand the mechanism of CO oxidation in RTIL in more detail we have investigated this reaction at the Pt(111)/1-butyl-3-methylimidazolium trifluorosulfonylimide [BMIM][NTf2] electrode/electrolyte interface as a function of H2O concentration and electrode potential with in situ sum-frequency generation (SFG) spectroscopy and infrared absorption spectroscopy (IRAS). Using SFG spectroscopy, we address the changes of linearly bonded CO molecules on Pt(111), while we monitor the changes in the bulk electrolyte with IRAS through vibrational bands from H2O, CO2 and CO. The presence of water in [BMIM][NTf2] shifts the onset potential for CO oxidation by more than 200 mV when the water concentration is increased from 0.01 to 1.5 M, which we relate to the incorporation and the availability of water at the electrode/electrolyte interface. The nature of the RTIL cation has also a large effect on the surface excess of H2O since RTILs like [BMMIM][NTf2] and [BMPyrr][NTf2] which are prone to form closed-packed structures, can block the incorporation of water and lead to more sluggish CO oxidation with larger overpotentials and oxidation in a much wider potential range for which we provide evidence by additional SFG measurements. These results clearly show that the choice of the RTIL is important for CO oxidation on Pt(111) electrode surfaces - an observation that is likely highly relevant also to other catalysts and catalytic reactions that require the presence of interfacial water.

2.
J Phys Chem Lett ; 11(17): 7116-7121, 2020 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-32787322

RESUMO

Water adsorption is important in many fields from surface electrochemistry to electrocatalysis, where molecular-level information is much needed in order to gain a detailed understanding of the role of interfacial water. Here we report on water at Pt(111) surfaces in contact with an [EIMIM][BF4] ionic liquid, which was spectroscopically resolved by using in situ sum-frequency generation (SFG). O-H modes are used to study water adsorption and water structure as a function of electrode potential, while the analysis of C-H modes is used to infer orientational changes of [EMIM] cations at the interface. Different from the bulk where free water molecules are found, SFG spectra provide evidence that an interfacial layer with an extended network of hydrogen-bonded water molecules exists and grows with increasing absolute potential which is used to identify the potential of zero charge at +0.1 V SHE, where a pronounced minimum in O-H intensity is found.

3.
J Phys Condens Matter ; 30(8): 085101, 2018 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-29323659

RESUMO

In this article we investigated the deformation of alginate capsules in magnetic fields. The sensitivity to magnetic forces was realised by encapsulating an oil in water emulsion, where the oil droplets contained dispersed magnetic nanoparticles. We solved calcium ions in the aqueous emulsion phase, which act as crosslinking compounds for forming thin layers of alginate membranes. This encapsulating technique allows the production of flexible capsules with an emulsion as the capsule core. It is important to mention that the magnetic nanoparticles were stable and dispersed throughout the complete process, which is an important difference to most magnetic alginate-based materials. In a series of experiments, we used spinning drop techniques, capsule squeezing experiments and interfacial shear rheology in order to determine the surface Young moduli, the surface Poisson ratios and the surface shear moduli of the magnetically sensitive alginate capsules. In additional experiments, we analysed the capsule deformation in magnetic fields. In spinning drop and capsule squeezing experiments, water droplets were pressed out of the capsules at elevated values of the mechanical load. This phenomenon might be used for the mechanically triggered release of water-soluble ingredients. After drying the emulsion-filled capsules, we produced capsules, which only contained a homogeneous oil phase with stable suspended magnetic nanoparticles (organic ferrofluid). In the dried state, the thin alginate membranes of these particles were rather rigid. These dehydrated capsules could be stored at ambient conditions for several months without changing their properties. After exposure to water, the alginate membranes rehydrated and became flexible and deformable again. During this swelling process, water diffused back in the capsule. This long-term stability and rehydration offers a great spectrum of different applications as sensors, soft actuators, artificial muscles or drug delivery systems.


Assuntos
Alginatos , Cápsulas , Campos Magnéticos , Difusão , Módulo de Elasticidade , Emulsões , Ácido Glucurônico , Ácidos Hexurônicos , Membranas Artificiais , Fenômenos Físicos , Reologia , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...