Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 505: 1093-1110, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-28697548

RESUMO

Montmorillonite (Mt) clays have a high specific surface area and surface charge, which confer them remarkable adsorption properties. Nevertheless, their electrochemical and aggregation behavior are not completely elucidated because of the complexity of their microstructural and interfacial properties. In this work, the conductive and dispersive properties of Na-Mt suspensions of weight fractions 0.5-5.2% were investigated for the first time using the spectral induced polarization method. A four-electrode system was used to reduce errors introduced by electrode polarization and contact resistances. Complex conductivity spectra in the low-frequency range of 0.1Hz to 45kHz were successfully described using a triple layer model of the basal surface of Mt and a complex conductivity model that considers conduction of the diffuse layer and polarization of the Stern layer. Aggregate size distributions were inferred from inverted relaxation time distributions. We found that the negative and permanent surface charge of the basal plane of Na-Mt controls its quadrature (imaginary) conductivity, which is not very sensitive to pH and salinity (NaCl) in the 100Hz to 45kHz frequency range. For lower frequencies, the sudden increase of the quadrature conductivity at the highest salinities was explained by considering coagulation of Na-Mt particles.

2.
Environ Sci Technol ; 49(9): 5593-600, 2015 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-25884287

RESUMO

The injection of microscale zerovalent iron (mZVI) particles for groundwater remediation has received much interest in recent years. However, to date, monitoring of mZVI particle injection is based on chemical analysis of groundwater and soil samples and thus might be limited in its spatiotemporal resolution. To overcome this deficiency, in this study, we investigate the application of complex electrical conductivity imaging, a geophysical method, to monitor the high-pressure injection of mZVI in a field-scale application. The resulting electrical images revealed an increase in the induced electrical polarization (∼20%), upon delivery of ZVI into the targeted area, due to the accumulation of metallic surfaces at which the polarization takes place. Furthermore, larger changes (>50%) occurred in shallow sediments, a few meters away from the injection, suggesting the migration of particles through preferential flowpaths. Correlation of the electrical response and geochemical data, in particular the analysis of recovered cores from drilling after the injection, confirmed the migration of particles (and stabilizing solution) to shallow areas through fractures formed during the injection. Hence, our results demonstrate the suitability of the complex conductivity imaging method to monitor the transport of mZVI during subsurface amendment in quasi real-time.


Assuntos
Condutividade Elétrica , Recuperação e Remediação Ambiental , Água Subterrânea/química , Imageamento Tridimensional , Ferro/química , Bélgica , Hidrocarbonetos Clorados/análise , Soluções
3.
Environ Sci Pollut Res Int ; 21(15): 8914-31, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24619658

RESUMO

The characterization of contaminated sites can benefit from the supplementation of direct investigations with a set of less invasive and more extensive measurements. A combination of geophysical methods and direct push techniques for contaminated land characterization has been proposed within the EU FP7 project ModelPROBE and the affiliated project SoilCAM. In this paper, we present results of the investigations conducted at the Trecate field site (NW Italy), which was affected in 1994 by crude oil contamination. The less invasive investigations include ground-penetrating radar (GPR), electrical resistivity tomography (ERT), and electromagnetic induction (EMI) surveys, together with direct push sampling and soil electrical conductivity (EC) logs. Many of the geophysical measurements were conducted in time-lapse mode in order to separate static and dynamic signals, the latter being linked to strong seasonal changes in water table elevations. The main challenge was to extract significant geophysical signals linked to contamination from the mix of geological and hydrological signals present at the site. The most significant aspects of this characterization are: (a) the geometrical link between the distribution of contamination and the site's heterogeneity, with particular regard to the presence of less permeable layers, as evidenced by the extensive surface geophysical measurements; and (b) the link between contamination and specific geophysical signals, particularly evident from cross-hole measurements. The extensive work conducted at the Trecate site shows how a combination of direct (e.g., chemical) and indirect (e.g., geophysical) investigations can lead to a comprehensive and solid understanding of a contaminated site's mechanisms.


Assuntos
Fenômenos Geológicos , Poluição por Petróleo/análise , Petróleo/análise , Solo/química , Condutividade Elétrica , Eletricidade , Geologia , Itália
4.
J Contam Hydrol ; 136-137: 131-44, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22784635

RESUMO

Broadband spectral induced polarization (SIP) measurements were conducted at a former hydrogenation plant in Zeitz (NE Germany) to investigate the potential of SIP imaging to delineate areas with different BTEX (benzene, toluene, ethylbenzene, and xylene) concentrations. Conductivity images reveal a poor correlation with the distribution of contaminants; whereas phase images exhibit two main anomalies: low phase shift values (<5 mrad) for locations with high BTEX concentrations, including the occurrence of free-phase product (BTEX concentrations >1.7 g/l), and higher phase values for lower BTEX concentrations. Moreover, the spectral response of the areas with high BTEX concentration and free-phase products reveals a flattened spectrum in the low frequencies (<40 Hz), while areas with lower BTEX concentrations exhibit a response characterized by a frequency peak. The SIP response was modelled using a Debye decomposition to compute images of the median relaxation-time. Consistent with laboratory studies, we observed an increase in the relaxation-time associated with an increase in BTEX concentrations. Measurements were also collected in the time domain (TDIP), revealing imaging results consistent with those obtained for frequency domain (SIP) measurements. Results presented here demonstrate the potential of the SIP imaging method to discriminate source and plume of dissolved contaminants at BTEX contaminated sites.


Assuntos
Monitoramento Ambiental/métodos , Hidrocarbonetos/química , Poluentes Atmosféricos/química , Benzeno/química , Derivados de Benzeno/química , Biodegradação Ambiental , Hidrogenação , Tolueno/química , Xilenos/química
5.
Environ Sci Technol ; 43(17): 6717-23, 2009 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-19764240

RESUMO

Understanding how microorganisms alter their physical and chemical environment during bioremediation is hindered by our inability to resolve subsurface microbial activity with high spatial resolution. Here we demonstrate the use of a minimally invasive geophysical technique to monitor stimulated microbial activity during acetate amendment in an aquifer near Rifle, Colorado. During electrical induced polarization (IP) measurements, spatiotemporal variations in the phase response between imposed electric current and the resultant electric field correlated with changes in groundwater geochemistry accompanying stimulated iron and sulfate reduction and sulfide mineral precipitation. The magnitude of the phase response varied with measurement frequency (0.125 and 1 Hz) and was dependent upon the dominant metabolic process. The spectral effect was corroborated using a biostimulated column experiment containing Rifle sediments and groundwater. Fluids and sediments recovered from regions exhibiting an anomalous phase response were enriched in Fe(II), dissolved sulfide, and cell-associated FeS nanoparticles. The accumulation of mineral precipitates and electroactive ions altered the ability of pore fluids to conduct electrical charge, accounting for the anomalous IP response and revealing the usefulness of multifrequency IP measurementsfor monitoring mineralogical and geochemical changes accompanying stimulated subsurface bioremediation.


Assuntos
Biodegradação Ambiental , Monitoramento Ambiental/métodos , Sedimentos Geológicos/química , Sedimentos Geológicos/microbiologia , Geologia/métodos , Poluentes Químicos da Água/análise , Colorado , Eletricidade , Compostos Ferrosos/química , Água Doce/química , Fenômenos Geológicos , Modelos Teóricos , Nanopartículas/química , Sulfetos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...