Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
PLoS One ; 14(2): e0211568, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30811418

RESUMO

Physical activity promotes metabolic and cardiovascular health benefits that derive in part from the transcriptional responses to exercise that occur within skeletal muscle and other organs. There is interest in discovering a pharmacologic exercise mimetic that could imbue wellness and alleviate disease burden. However, the molecular physiology by which exercise signals the transcriptional response is highly complex, making it challenging to identify a single target for pharmacological mimicry. The current studies evaluated the transcriptome responses in skeletal muscle, heart, liver, and white and brown adipose to novel small molecule activators of AMPK (pan-activators for all AMPK isoforms) compared to that of exercise. A striking level of congruence between exercise and pharmacological AMPK activation was observed across the induced transcriptome of these five tissues. However, differences in acute metabolic response between exercise and pharmacologic AMPK activation were observed, notably for acute glycogen balances and related to the energy expenditure induced by exercise but not pharmacologic AMPK activation. Nevertheless, intervention with repeated daily administration of short-acting activation of AMPK was found to mitigate hyperglycemia and hyperinsulinemia in four rodent models of metabolic disease and without the cardiac glycogen accretion noted with sustained pharmacologic AMPK activation. These findings affirm that activation of AMPK is a key node governing exercise mediated transcription and is an attractive target as an exercise mimetic.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Tecido Adiposo/metabolismo , Fígado/metabolismo , Músculo Esquelético/metabolismo , Miocárdio/metabolismo , Animais , Metabolismo Energético , Ativação Enzimática/efeitos dos fármacos , Ácidos Graxos/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Glucose/metabolismo , Homeostase , Camundongos Endogâmicos C57BL , Oxirredução , Condicionamento Físico Animal
2.
Science ; 357(6350): 507-511, 2017 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-28705990

RESUMO

5'-Adenosine monophosphate-activated protein kinase (AMPK) is a master regulator of energy homeostasis in eukaryotes. Despite three decades of investigation, the biological roles of AMPK and its potential as a drug target remain incompletely understood, largely because of a lack of optimized pharmacological tools. We developed MK-8722, a potent, direct, allosteric activator of all 12 mammalian AMPK complexes. In rodents and rhesus monkeys, MK-8722-mediated AMPK activation in skeletal muscle induced robust, durable, insulin-independent glucose uptake and glycogen synthesis, with resultant improvements in glycemia and no evidence of hypoglycemia. These effects translated across species, including diabetic rhesus monkeys, but manifested with concomitant cardiac hypertrophy and increased cardiac glycogen without apparent functional sequelae.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Cardiomegalia/induzido quimicamente , Glucose/metabolismo , Homeostase/efeitos dos fármacos , Imidazóis/farmacologia , Piridinas/farmacologia , Animais , Benzimidazóis , Glicemia/efeitos dos fármacos , Jejum , Glicogênio/metabolismo , Hipoglicemia/induzido quimicamente , Imidazóis/efeitos adversos , Imidazóis/química , Insulina/farmacologia , Macaca mulatta , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Piridinas/efeitos adversos , Piridinas/química
3.
Adipocyte ; 2(3): 188-90, 2013 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-23991367

RESUMO

Recent studies, including one from our own lab, report that different subpopulations of obese individuals display a variable inflammatory signature in their visceral adipose tissue that may contribute significantly to their risk for developing insulin resistance, type 2 diabetes, and other metabolic diseases. Understanding the molecular mechanisms and signaling pathways that lead to these differences in susceptibility to insulin resistance will equip us with important targets to help stem the tide of such debilitating diseases. Here we discuss an emerging theory that chronic, low-grade endotoxemia may represent a causal factor in obesity-related inflammatory states, and that diet-induced changes in the gut microbiome may be a key regulator of metabolic health. The implications to both disease prevention and to therapeutic intervention are also highlighted.

4.
Biochem Biophys Res Commun ; 430(3): 1109-13, 2013 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-23261432

RESUMO

The cytoprotective stress response factor HSF1 regulates the transcription of the chaperone HSP70, which exhibits anti-inflammatory effects and improves insulin sensitivity. We tested the therapeutic potential of this pathway in rodent models of diabetes using pharmacological tools. Activation of the HSF1 pathway was achieved using potent inhibitors of the upstream regulatory protein, HSP90. Treatment with AUY922, a selective HSP90 inhibitor led to robust inhibition of JNK1 phosphorylation, cytoprotection and improved insulin signaling in cells, consistent with effects observed with HSP70 treatment. Chronic dosing with HSP90 inhibitors reversed hyperglycemia in the diabetic db/db mouse model, and improved insulin sensitivity in the diet-induced obese mouse model of insulin resistance, further supporting the concept that the HSF1 pathway is a potentially viable anti-diabetes target.


Assuntos
Glicemia/efeitos dos fármacos , Proteínas de Ligação a DNA/agonistas , Diabetes Mellitus Tipo 2/tratamento farmacológico , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Hipoglicemiantes/administração & dosagem , Isoxazóis/administração & dosagem , Resorcinóis/administração & dosagem , Fatores de Transcrição/agonistas , Animais , Benzoquinonas/farmacologia , Glicemia/metabolismo , Células Cultivadas , Citoproteção , Diabetes Mellitus Tipo 2/metabolismo , Fatores de Transcrição de Choque Térmico , Resposta ao Choque Térmico , Isoxazóis/química , Lactamas Macrocíclicas/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos , Mioblastos/efeitos dos fármacos , Mioblastos/metabolismo , Resorcinóis/química
5.
Diabetes ; 62(3): 855-63, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23223024

RESUMO

Obesity is associated with insulin resistance, a major risk factor for type 2 diabetes and cardiovascular disease. However, not all obese individuals are insulin resistant, which confounds our understanding of the mechanistic link between these conditions. We conducted transcriptome analyses on 835 obese subjects with mean BMI of 48.8, on which we have previously reported genetic associations of gene expression. Here, we selected ~320 nondiabetic (HbA(1c) <7.0) subjects and further stratified the cohort into insulin-resistant versus insulin-sensitive subgroups based on homeostasis model assessment-insulin resistance. An unsupervised informatics analysis revealed that immune response and inflammation-related genes were significantly downregulated in the omental adipose tissue of obese individuals with extreme insulin sensitivity and, to a much lesser extent, in subcutaneous adipose tissue. In contrast, genes related to ß-oxidation and the citric acid cycle were relatively overexpressed in adipose of insulin-sensitive patients. These observations were verified by querying an independent cohort of our published dataset of 37 subjects whose subcutaneous adipose tissue was sampled before and after treatment with thiazolidinediones. Whereas the immune response and inflammation pathway genes were downregulated by thiazolidinedione treatment, ß-oxidation and citric acid cycle genes were upregulated. This work highlights the critical role that omental adipose inflammatory pathways might play in the pathophysiology of insulin resistance, independent of body weight.


Assuntos
Regulação Enzimológica da Expressão Gênica , Resistência à Insulina , Gordura Intra-Abdominal/imunologia , Mitocôndrias/metabolismo , Obesidade Mórbida/imunologia , Adulto , Biópsia , Índice de Massa Corporal , Ciclo do Ácido Cítrico/efeitos dos fármacos , Estudos de Coortes , Diabetes Mellitus Tipo 2/complicações , Perfilação da Expressão Gênica , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Humanos , Hipoglicemiantes/uso terapêutico , Gordura Intra-Abdominal/efeitos dos fármacos , Gordura Intra-Abdominal/metabolismo , Gordura Intra-Abdominal/patologia , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/patologia , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Obesidade Mórbida/complicações , Obesidade Mórbida/metabolismo , Obesidade Mórbida/patologia , Análise de Sequência com Séries de Oligonucleotídeos , Fosforilação Oxidativa/efeitos dos fármacos , RNA Mensageiro/metabolismo , Gordura Subcutânea Abdominal/efeitos dos fármacos , Gordura Subcutânea Abdominal/imunologia , Gordura Subcutânea Abdominal/metabolismo , Gordura Subcutânea Abdominal/patologia , Tiazolidinedionas/uso terapêutico
6.
PLoS Genet ; 8(12): e1003107, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23236292

RESUMO

Complex diseases result from molecular changes induced by multiple genetic factors and the environment. To derive a systems view of how genetic loci interact in the context of tissue-specific molecular networks, we constructed an F2 intercross comprised of >500 mice from diabetes-resistant (B6) and diabetes-susceptible (BTBR) mouse strains made genetically obese by the Leptin(ob/ob) mutation (Lep(ob)). High-density genotypes, diabetes-related clinical traits, and whole-transcriptome expression profiling in five tissues (white adipose, liver, pancreatic islets, hypothalamus, and gastrocnemius muscle) were determined for all mice. We performed an integrative analysis to investigate the inter-relationship among genetic factors, expression traits, and plasma insulin, a hallmark diabetes trait. Among five tissues under study, there are extensive protein-protein interactions between genes responding to different loci in adipose and pancreatic islets that potentially jointly participated in the regulation of plasma insulin. We developed a novel ranking scheme based on cross-loci protein-protein network topology and gene expression to assess each gene's potential to regulate plasma insulin. Unique candidate genes were identified in adipose tissue and islets. In islets, the Alzheimer's gene App was identified as a top candidate regulator. Islets from 17-week-old, but not 10-week-old, App knockout mice showed increased insulin secretion in response to glucose or a membrane-permeant cAMP analog, in agreement with the predictions of the network model. Our result provides a novel hypothesis on the mechanism for the connection between two aging-related diseases: Alzheimer's disease and type 2 diabetes.


Assuntos
Doença de Alzheimer , Secretases da Proteína Precursora do Amiloide , Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Insulina , Tecido Adiposo/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Secretases da Proteína Precursora do Amiloide/deficiência , Secretases da Proteína Precursora do Amiloide/genética , Secretases da Proteína Precursora do Amiloide/metabolismo , Animais , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Glucose/metabolismo , Humanos , Insulina/sangue , Insulina/genética , Insulina/metabolismo , Secreção de Insulina , Ilhotas Pancreáticas/metabolismo , Leptina/genética , Camundongos , Camundongos Knockout , Camundongos Obesos/genética , Mapas de Interação de Proteínas
7.
PLoS One ; 6(8): e23480, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21912597

RESUMO

Complex diseases such as obesity and type II diabetes can result from a failure in multiple organ systems including the central nervous system and tissues involved in partitioning and disposal of nutrients. Studying the genetics of gene expression in tissues that are involved in the development of these diseases can provide insights into how these tissues interact within the context of disease. Expression quantitative trait locus (eQTL) studies identify mRNA expression changes linked to proximal genetic signals (cis eQTLs) that have been shown to affect disease. Given the high impact of recent eQTL studies, it is important to understand what role sample size and environment plays in identification of cis eQTLs. Here we show in a genotyped obese human population that the number of cis eQTLs obey precise scaling laws as a function of sample size in three profiled tissues, i.e. omental adipose, subcutaneous adipose and liver. Also, we show that genes (or transcripts) with cis eQTL associations detected in a small population are detected at approximately 90% rate in the largest population available for our study, indicating that genes with strong cis acting regulatory elements can be identified with relatively high confidence in smaller populations. However, by increasing the sample size we allow for better detection of weaker and more distantly located cis-regulatory elements. Yet, we determined that the number of tissue specific cis eQTLs saturates in a modestly sized cohort while the number of cis eQTLs common to all tissues fails to reach a maximum value. Understanding the power laws that govern the number and specificity of eQTLs detected in different tissues, will allow a better utilization of genetics of gene expression to inform the molecular mechanism underlying complex disease traits.


Assuntos
Biologia Computacional , Regulação da Expressão Gênica/genética , Sequências Reguladoras de Ácido Nucleico/genética , DNA/química , DNA/genética , Doença/genética , Humanos , Modelos Moleculares , Conformação de Ácido Nucleico , Especificidade de Órgãos , Locos de Características Quantitativas/genética
8.
Genome Res ; 21(7): 1008-16, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21602305

RESUMO

To map the genetics of gene expression in metabolically relevant tissues and investigate the diversity of expression SNPs (eSNPs) in multiple tissues from the same individual, we collected four tissues from approximately 1000 patients undergoing Roux-en-Y gastric bypass (RYGB) and clinical traits associated with their weight loss and co-morbidities. We then performed high-throughput genotyping and gene expression profiling and carried out a genome-wide association analyses for more than 100,000 gene expression traits representing four metabolically relevant tissues: liver, omental adipose, subcutaneous adipose, and stomach. We successfully identified 24,531 eSNPs corresponding to about 10,000 distinct genes. This represents the greatest number of eSNPs identified to our knowledge by any study to date and the first study to identify eSNPs from stomach tissue. We then demonstrate how these eSNPs provide a high-quality disease map for each tissue in morbidly obese patients to not only inform genetic associations identified in this cohort, but in previously published genome-wide association studies as well. These data can aid in elucidating the key networks associated with morbid obesity, response to RYGB, and disease as a whole.


Assuntos
Mucosa Gástrica/metabolismo , Fígado/metabolismo , Obesidade Mórbida/epidemiologia , Obesidade Mórbida/genética , Adiposidade/genética , Adulto , Estudos de Coortes , Comorbidade , Bases de Dados Genéticas , Feminino , Derivação Gástrica , Perfilação da Expressão Gênica , Estudo de Associação Genômica Ampla/métodos , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Obesidade Mórbida/cirurgia , Polimorfismo de Nucleotídeo Único , Redução de Peso
9.
BMC Mol Biol ; 8: 46, 2007 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-17550601

RESUMO

BACKGROUND: Using a gene clustering strategy we determined intracellular pathway relationships within skeletal myotubes in response to an acute heat stress stimuli. Following heat shock, the transcriptome was analyzed by microarray in a temporal fashion to characterize the dynamic relationship of signaling pathways. RESULTS: Bioinformatics analyses exposed coordination of functionally-related gene sets, depicting mechanism-based responses to heat shock. Protein turnover-related pathways were significantly affected including protein folding, pre-mRNA processing, mRNA splicing, proteolysis and proteasome-related pathways. Many responses were transient, tending to normalize within 24 hours. CONCLUSION: In summary, we show that the transcriptional response to acute cell stress is largely transient and proteosome-centric.


Assuntos
Regulação da Expressão Gênica , Transtornos de Estresse por Calor , Família Multigênica , Animais , Linhagem Celular , Perfilação da Expressão Gênica , Camundongos , Fibras Musculares Esqueléticas/fisiologia , Análise de Sequência com Séries de Oligonucleotídeos , Proteoma/análise , Transdução de Sinais/fisiologia , Transcrição Gênica
10.
Bioinformatics ; 23(11): 1356-62, 2007 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-17392327

RESUMO

MOTIVATION: We describe an extension of the pathway-based enrichment approach for analyzing microarray data via a robust test for transcriptional variance. The use of a variance test is intended to identify additional patterns of transcriptional regulation in which many genes in a pathway are up- and down-regulated. Such patterns may be indicative of the reciprocal regulation of pathway activators and inhibitors or of the differential regulation of separate biological sub-processes and should extend the number of detectable patterns of transcriptional modulation. RESULTS: We validated this new statistical approach on a microarray experiment that captures the temporal transcriptional profile of muscle differentiation in mouse C2C12 cells. Comparisons of the transcriptional state of myoblasts and differentiated myotubes via a robust variance test implicated several novel pathways in muscle cell differentiation previously overlooked by a standard enrichment analysis. Specifically, pathways involved in cell structure, calcium-mediated signaling and muscle-specific signaling were identified as differentially modulated based on their increased transcriptional variance. These biologically relevant results validate this approach and demonstrate the flexible nature of pathway-based methods of data analysis. AVAILABILITY: The software is available as Supplementary Material.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Células Musculares/citologia , Células Musculares/metabolismo , Mioblastos/citologia , Mioblastos/metabolismo , Transdução de Sinais/fisiologia , Fatores de Transcrição/metabolismo , Animais , Diferenciação Celular , Simulação por Computador , Variação Genética/genética , Camundongos , Modelos Biológicos , Proteínas Musculares/metabolismo , Ativação Transcricional/fisiologia
11.
Biochem Biophys Res Commun ; 351(2): 481-4, 2006 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-17064666

RESUMO

The potential therapeutic value of resveratrol in age-related disease settings including cancer, diabetes, and Alzheimer's has emerged from a rapidly growing body of experimental evidence. Protection from oxidative stress appears to be a common feature of resveratrol that may be mediated through SirT1, though more specific molecular mechanisms by which resveratrol mediates its effects remain unclear. This has prompted an upsurge in cell-based mechanistic studies, often incorporating reporter assays for pathway elucidation in response to resveratrol treatment. Here, we report that resveratrol potently inhibits firefly luciferase with a K(i) value of 2microM, and caution that this confounding element may lead to compromised data interpretation.


Assuntos
Antioxidantes/farmacologia , Luciferases de Vaga-Lume/antagonistas & inibidores , Estilbenos/farmacologia , Animais , Linhagem Celular , Genes Reporter , Luciferases de Vaga-Lume/genética , Luciferases de Vaga-Lume/metabolismo , Camundongos , Resveratrol
12.
Biochem Biophys Res Commun ; 341(3): 882-8, 2006 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-16442498

RESUMO

Here, we enriched a human cell population from adipose tissue that exhibited both mesenchymal plasticity, self-renewal capacity, and a cell-surface marker profile indistinguishable from that of bone marrow-derived mesenchymal stem cells. In addition to adipogenic and osteogenic differentiation, these adipose-derived stem cells displayed skeletal myogenic potential when co-cultured with mouse skeletal myocytes in reduced serum conditions. Physical incorporation of stem cells into multinucleated skeletal myotubes was determined by genetic lineage tracing, whereas human-specific antibody staining was employed to demonstrate functional contribution of the stem cells to a myogenic lineage. To investigate the effects of hypoxia, cells were maintained and differentiated at 2% O(2). In contrast with reports on bone marrow-derived stem cells, both osteogenic and adipogenic differentiation were significantly attenuated. In summary, the relative accessibility of adipose-derived mesenchymal stem cells from human donors provides opportunity for molecular investigation of mechanistic dysfunction in disease settings and may introduce new prospects for cell-based therapy.


Assuntos
Adipócitos/citologia , Diferenciação Celular , Hipóxia Celular/fisiologia , Células-Tronco/citologia , Células-Tronco/fisiologia , Animais , Antígenos/metabolismo , Linhagem Celular , Linhagem da Célula , Técnicas de Cocultura , Humanos , Camundongos , Desenvolvimento Muscular , Osteogênese
13.
J Biol Chem ; 281(1): 16-9, 2006 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-16291741

RESUMO

Processed pseudogenes emerge by reverse transcription of spliced mRNAs followed by incorporation of the resultant cDNA into the genome. Their genesis requires that retrotransposition occurs within the germ line, a provision that significantly limits random distribution of source genes. We previously identified embryonic stem cell-specific genes as an enriched source of retropseudogene origin. Nanog, Oct4, and Dppa3 (Stella/PGC7) presented as source genes for >30 processed pseudogenes within the human genome. In the current study, we extended our previous analysis and focused on the pluripotent cell-specific Dppa gene family. Of the five Dppa genes characterized, four were associated with putative retropseudogenes as determined by nucleotide BLAST (basic local alignment sequence tool) searches of the respective mRNA transcripts against the human genome. A subset of the 11 Dppa3-derived hits were then screened against a human adult tissue cDNA panel for evidence of transcriptional activity. One of the putative Dppa3-derived retropseudogenes, Dppa3(d), located on human chromosome 16p13, tested positive for mRNA transcript in bone marrow, peripheral blood, pancreas, adrenal gland, and thyroid gland. Specificity against the source Dppa3 gene expression was sequence verified, and independent human tissue samples were obtained to confirm Dppa3(d) expression. These data substantiate the existence of human adult tissue-specific transcripts that originate via retrotransposition of the pluripotent cell-specific gene, Dppa3. Further studies may reveal an evolutionary role for this example of genetic diversity, but in the short term our observations serve a cautionary purpose regarding the use of Dppa3 transcripts in adult tissue-derived cells as a potential marker of pluripotency.


Assuntos
Células-Tronco Pluripotentes/fisiologia , Proteínas/genética , Pseudogenes/genética , Adulto , Proteínas Cromossômicas não Histona , Evolução Molecular , Genoma Humano , Células Germinativas/fisiologia , Humanos , Transcrição Gênica/genética
14.
Genomics ; 87(1): 129-38, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16300922

RESUMO

Stem cell differentiation is governed by extracellular signals that activate intracellular networks (or pathways) to drive phenotypic specification. Using a novel gene clustering strategy we determined pathway relationships from a genome-wide transcriptional dataset of skeletal myoblast differentiation. Established myogenic pathways, including cell contractility and cell-cycle arrest, were predicted with extreme statistical significance (p approximately 0). In addition, gene sets associated with angiogenesis, neuronal activity, and mRNA splicing were regulated, exposing developmental and therapeutic implications. Acquisition of transcriptional data spanning the entire differentiation time course provided context for a dynamic landscape of functional pathway regulation. This novel perspective on myogenic cell differentiation revealed previously unrecognized patterns of regulation. We predict that similar analyses will facilitate ongoing efforts to define molecular mechanisms in other stem cell and developmental paradigms. Finally, by combining an iterative process of analysis with supplementation of novel pathways, this application may evolve into a powerful discovery tool.


Assuntos
Diferenciação Celular/fisiologia , Regulação da Expressão Gênica/fisiologia , Desenvolvimento Muscular/genética , Mioblastos/fisiologia , Transdução de Sinais/fisiologia , Células-Tronco/fisiologia , Animais , Ciclo Celular/genética , Perfilação da Expressão Gênica/métodos , Camundongos , Contração Muscular/fisiologia , Mioblastos/citologia , Neovascularização Fisiológica/genética , Neurônios/citologia , Neurônios/fisiologia , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Células-Tronco/citologia
15.
Exp Cell Res ; 307(1): 174-82, 2005 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-15922737

RESUMO

Much attention is focused on characterizing the contribution of bone marrow (BM)-derived cells to regenerating skeletal muscle, fuelled by hopes for stem cell-mediated therapy of muscle degenerative diseases. Though physical integration of BM stem cells has been well documented, little evidence of functional commitment to myotube phenotype has been reported. This is due to the innate difficulty in distinguishing gene products derived from donor versus host nuclei. Here, we demonstrate that BM-derived stem cells contribute via gene expression following incorporation to skeletal myotubes. By co-culturing human BM-derived mesenchymal stem cells (MSC) with mouse skeletal myoblasts, physical incorporation was observed by genetic lineage tracing and species-specific immunofluorescence. We used a human-specific antibody against the intermediate filament protein nestin, a marker of regenerating skeletal muscle, to identify functional contribution of MSC to myotube formation. Although nestin expression was never detected in MSC, human-specific expression was detected in myotubes that also contained MSC-derived nuclei. This induction of gene expression following myotube integration suggests that bone marrow-derived stem cells can reprogram and functionally contribute to the muscle cell phenotype. We propose that this model of myogenic commitment may provide the means to further characterize functional reprogramming of MSC to skeletal muscle.


Assuntos
Células da Medula Óssea/citologia , Regulação da Expressão Gênica , Células-Tronco Mesenquimais/citologia , Desenvolvimento Muscular , Fibras Musculares Esqueléticas/citologia , Adipócitos/citologia , Animais , Biomarcadores , Técnicas de Cultura de Células , Diferenciação Celular , Fusão Celular , Linhagem Celular , Linhagem da Célula , Núcleo Celular/metabolismo , Separação Celular/métodos , Técnicas de Cocultura , Endotélio Vascular/citologia , Imunofluorescência , Proteínas de Fluorescência Verde/metabolismo , Humanos , Proteínas de Filamentos Intermediários/metabolismo , Camundongos , Microscopia de Fluorescência , Modelos Biológicos , Mioblastos/citologia , Neovascularização Fisiológica , Proteínas do Tecido Nervoso/metabolismo , Nestina , Osteócitos/citologia , Especificidade da Espécie , Ativação Transcricional
16.
J Biol Chem ; 280(8): 6265-8, 2005 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-15640145

RESUMO

Oct4, Nanog, and Stella are transcription factors specifically expressed in embryonic stem (ES) cells and germ lineage cells that impart critical functions in the maintenance of pluripotency. Here, we report the excessive frequency and apparent selectivity of retrotransposition of ES cell-specific genes. Six highly homologous pseudogenes for Oct4, 10 for Nanog, and 16 for Stella were identified by nucleotide BLAST (basic local alignment sequence tool) searches against the respective gene mRNA transcripts. Of 15 non-ES cell-specific transcription factor genes, only one had a single pseudogene hit in our screen, emphasizing the apparent selectivity. We present a hypothesis whereby retrotransposition of ES or germ cell-specific genes may reflect an innate predisposition. This is based on the increased probability of germ-line transmission when retrotransposition occurs at a very early stage of development within cells known to contribute to the germ cell lineage. The parental genes for Nanog, Stella, and another embryonic gene, GDF3 are all located on chromosome 12p13 of the human genome, and on chromosome 6 in mouse. Here, we identified an Oct4 pseudogene at the same respective loci in both human and mouse genomes, suggesting functional relevance and indicative of epigenetic regulation. We tested whether the apparent susceptibility for ES cell-specific gene retrotransposition may be extrapolated to a more unified phenomenon, such that a bioinformatic approach may represent a potentially novel strategy for identification of genes with embryonic cell-specific functionality. A preliminary investigation indeed revealed a single gene, previously demonstrated to be responsible for multiple retropseudogenes via germ cell-specific expression in Xenopus.


Assuntos
Proteínas de Ligação a DNA/genética , Regulação da Expressão Gênica , Células-Tronco Pluripotentes/citologia , Pseudogenes , Proteínas Cromossômicas não Histona , Cromossomos Humanos Par 12 , Proteínas de Ligação a DNA/fisiologia , Bases de Dados de Ácidos Nucleicos , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/fisiologia , Humanos , Proteína Homeobox Nanog , Fator 3 de Transcrição de Octâmero , Proteínas/genética , Proteínas/fisiologia , RNA Mensageiro/genética , Retroelementos , Alinhamento de Sequência , Fatores de Transcrição/genética , Fatores de Transcrição/fisiologia
17.
Endocrinology ; 146(3): 1025-34, 2005 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15604203

RESUMO

Considerable progress has been made in the understanding of the sequential activation of signal transduction pathways and the expression of transcription factors during pancreas development. Much of this understanding has been obtained by analyses of the phenotypes of mice in which the expression of key genes has been disrupted (knockout mice). Knockout of the genes for Pdx1, Hlxb9, Isl1, or Hex results in an arrest of pancreas development at a very early stage (embryonic d 8-9). Disruption of genes encoding components of the Notch signaling pathway, e.g. Hes1 or neurogenin-3, abrogates development of the endocrine pancreas (islets of Langerhans). Disruption of transcription factor genes expressed more downstream in the developmental cascade (Beta2/NeuroD, Pax4, NKx2.2, and Nkx6.1) curtails the formation of insulin-producing beta-cells. An understanding of the importance of transcription factor genes during pancreas development has provided insights into the pathogenesis of diabetes, in which the mass of insulin-producing beta-cells is reduced.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Pâncreas/embriologia , Transcrição Gênica , Animais , Proteína Homeobox Nkx-2.2 , Proteínas de Homeodomínio/genética , Humanos , Ilhotas Pancreáticas/metabolismo , Proteínas com Homeodomínio LIM , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Knockout , Modelos Biológicos , Mutação , Proteínas do Tecido Nervoso/genética , Proteínas Nucleares , Fenótipo , Receptores Notch , Transdução de Sinais , Transativadores/genética , Fatores de Transcrição/genética
18.
Endocrinology ; 145(6): 3023-31, 2004 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-14976144

RESUMO

The deposition of amyloid within the insulin-producing islets of Langerhans in the pancreas is a common pathological finding in patients with type 2 diabetes. Its relationship with age and the progression of the disease resembles the pathological deposition of beta-amyloid in the brains of Alzheimer's patients. Endocrine cells of pancreatic islets and cells of neuronal lineages express a shared subset of specialized genes. The hyperactivity of the cyclin-dependent protein kinase CDK5, involved in the development and differentiation of the nervous system, is associated with Alzheimer's disease. Overactivity of CDK5 occurs by proteolytic cleavage and cellular mislocalization of its activator, p35. These alterations in p35/CDK5 signaling pathway may mediate, at least in part, the functional abnormalities characteristic of Alzheimer's disease. In this study we report that both the p35 and CDK5 genes are expressed in insulin-producing beta-cells of the pancreas. We detect in beta-cells the formation of an active p35/CDK5 complex with specific kinase activity. Notably, elevations of the extracellular concentration of glucose result in increases in p35 mRNA and protein levels that parallel elevations of p35/CDK5 activity. Functional studies show that p35 stimulates the activity of the insulin promoter and that the stimulation requires CDK5 because stimulation is blocked by roscovitine, an inhibitor of CDK5 activity, a dominant negative form of CDK5, and small interfering RNAs against p35. Our findings indicate that the expression of p35 and CDK5 in insulin-producing beta-cells ensembles a new signaling pathway, the activity of which is controlled by glucose, and its functional role may comprise the regulation of various biological processes in beta-cells, such as is the case for expression of the insulin gene.


Assuntos
Doença de Alzheimer/metabolismo , Glucose/metabolismo , Insulina/genética , Ilhotas Pancreáticas/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Transcrição Gênica/fisiologia , Animais , Linhagem Celular , Técnicas de Cultura , Quinase 5 Dependente de Ciclina , Quinases Ciclina-Dependentes/metabolismo , Humanos , Masculino , Concentração Osmolar , Testes de Precipitina , Proteínas Quinases/metabolismo , Ratos , Ratos Wistar , Transdução de Sinais , Transfecção
19.
J Biol Chem ; 278(37): 35057-62, 2003 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-12829700

RESUMO

An elucidation of the key regulatory factors in pancreas development is critical for understanding the pathogenesis of diabetes mellitus. This study examined whether a specific regulatory mechanism that exists in neuronal development also plays a role in the pancreas. In non-neuronal cells, neuron-restrictive silencer factor (NSRF) actively represses gene transcription via a sequence-specific DNA motif known as the neuron-restrictive silencer element (NRSE). This DNA motif has been identified in many genes that are specific markers for cells of neuronal and neuroendocrine lineage. We identified several genes involved in pancreas development that also harbor NRSE-like motifs, including pdx-1, Beta2/NeuroD, and pax4. The paired homeodomain transcription factor Pax4 is implicated in the differentiation of the insulin-producing beta-cell lineage because disruption of the pax4 gene results in a severe deficiency of beta-cells and the manifestation of diabetes mellitus in mice. The NRSE-like motif identified in the upstream pax4 promoter is highly conserved throughout evolution, forms a DNA-protein complex with NRSF, and confers NRSF-dependent transcriptional repression in the context of a surrogate gene promoter. This cis-activating NRSE element also confers NRSF-dependent modulation in the context of the native pax4 gene promoter. Together with earlier reports, these new findings suggest an important functional role for NRSF in the expression of the pax4 gene and infer a role for NRSF in pancreatic islet development.


Assuntos
Regulação da Expressão Gênica , Proteínas de Homeodomínio/genética , Proteínas Repressoras/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica , Animais , Sequência de Bases , Linhagem Celular , Sequência Consenso , Primers do DNA , Proteínas de Ligação a DNA/metabolismo , Diabetes Mellitus/genética , Deleção de Genes , Genes Reporter , Células HeLa , Proteínas de Homeodomínio/metabolismo , Humanos , Luciferases/genética , Camundongos , Dados de Sequência Molecular , Fatores de Transcrição Box Pareados , Pâncreas/crescimento & desenvolvimento , Pâncreas/fisiologia , Ratos , Proteínas Recombinantes/metabolismo , Proteínas Repressoras/genética , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...