Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Protein Sci ; 29(10): 2028-2037, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32790204

RESUMO

Cotranslational protein folding studies using Force Profile Analysis, a method where the SecM translational arrest peptide is used to detect folding-induced forces acting on the nascent polypeptide, have so far been limited mainly to small domains of cytosolic proteins that fold in close proximity to the translating ribosome. In this study, we investigate the cotranslational folding of the periplasmic, disulfide bond-containing Escherichia coli protein alkaline phosphatase (PhoA) in a wild-type strain background and a strain background devoid of the periplasmic thiol: disulfide interchange protein DsbA. We find that folding-induced forces can be transmitted via the nascent chain from the periplasm to the polypeptide transferase center in the ribosome, a distance of ~160 Å, and that PhoA appears to fold cotranslationally via at least two disulfide-stabilized folding intermediates. Thus, Force Profile Analysis can be used to study cotranslational folding of proteins in an extra-cytosolic compartment, like the periplasm.


Assuntos
Fosfatase Alcalina/biossíntese , Proteínas de Escherichia coli/biossíntese , Escherichia coli/enzimologia , Periplasma/enzimologia , Biossíntese de Proteínas , Dobramento de Proteína , Fosfatase Alcalina/genética , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Periplasma/genética
2.
Proc Natl Acad Sci U S A ; 117(25): 14119-14126, 2020 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-32513720

RESUMO

Proteins synthesized in the cell can begin to fold during translation before the entire polypeptide has been produced, which may be particularly relevant to the folding of multidomain proteins. Here, we study the cotranslational folding of adjacent domains from the cytoskeletal protein α-spectrin using force profile analysis (FPA). Specifically, we investigate how the cotranslational folding behavior of the R15 and R16 domains are affected by their neighboring R14 and R16, and R15 and R17 domains, respectively. Our results show that the domains impact each other's folding in distinct ways that may be important for the efficient assembly of α-spectrin, and may reduce its dependence on chaperones. Furthermore, we directly relate the experimentally observed yield of full-length protein in the FPA assay to the force exerted by the folding protein in piconewtons. By combining pulse-chase experiments to measure the rate at which the arrested protein is converted into full-length protein with a Bell model of force-induced rupture, we estimate that the R16 domain exerts a maximal force on the nascent chain of ∼15 pN during cotranslational folding.


Assuntos
Dobramento de Proteína , Espectrina/química , Escherichia coli , Simulação de Dinâmica Molecular , Biossíntese de Proteínas , Domínios Proteicos , Espectrina/genética , Espectrina/metabolismo
3.
Nat Microbiol ; 4(12): 2310-2318, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31570869

RESUMO

Lower respiratory infections (LRIs) are the leading cause of death in children under the age of 5, despite the existence of vaccines against many of their aetiologies. Furthermore, more than half of these deaths occur in Africa. Geospatial models can provide highly detailed estimates of trends subnationally, at the level where implementation of health policies has the greatest impact. We used Bayesian geostatistical modelling to estimate LRI incidence, prevalence and mortality in children under 5 subnationally in Africa for 2000-2017, using surveys covering 1.46 million children and 9,215,000 cases of LRI. Our model reveals large within-country variation in both health burden and its change over time. While reductions in childhood morbidity and mortality due to LRI were estimated for almost every country, we expose a cluster of residual high risk across seven countries, which averages 5.5 LRI deaths per 1,000 children per year. The preventable nature of the vast majority of LRI deaths mandates focused health system efforts in specific locations with the highest burden.


Assuntos
Morbidade , Infecções Respiratórias/mortalidade , África/epidemiologia , Teorema de Bayes , Pré-Escolar , Humanos , Incidência , Lactente , Recém-Nascido , Prevalência , Saúde Pública/normas , Fatores de Risco
4.
J Mol Biol ; 431(6): 1308-1314, 2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30738895

RESUMO

We have characterized the cotranslational folding of two small protein domains of different folds-the α-helical N-terminal domain of HemK and the ß-rich FLN5 filamin domain-by measuring the force that the folding protein exerts on the nascent chain when located in different parts of the ribosome exit tunnel (force-profile analysis, or FPA), allowing us to compare FPA to three other techniques currently used to study cotranslational folding: real-time FRET, photoinduced electron transfer, and NMR. We find that FPA identifies the same cotranslational folding transitions as do the other methods, and that these techniques therefore reflect the same basic process of cotranslational folding in similar ways.


Assuntos
Proteínas de Escherichia coli/química , Filaminas/química , Domínios Proteicos , Dobramento de Proteína , Proteínas Metiltransferases/química , Fenômenos Biofísicos , Escherichia coli/metabolismo , Modelos Moleculares , Conformação Proteica em alfa-Hélice
5.
Biol Chem ; 395(12): 1365-77, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25153378

RESUMO

Membrane proteins are important mediators between the cell and its environment or between different compartments within a cell. However, much less is known about the structure and function of membrane proteins compared to water-soluble proteins. Moreover, until recently a subset of membrane proteins, those shorter than 100 amino acids, have almost completely evaded detection as a result of technical difficulties. These small membrane proteins (SMPs) have been underrepresented in most genomic and proteomic screens of both pro- and eukaryotic cells and, hence, we know much less about their functions in both. Currently, through a combination of bioinformatics, ribosome profiling, and more sensitive proteomics, large numbers of SMPs are being identified and characterized. Herein we describe recent advances in identifying SMPs from genomic and proteomic datasets and describe examples where SMPs have been successfully characterized biochemically. Finally we give an overview of identified functions of SMPs and speculate on the possible roles SMPs play in the cell.


Assuntos
Proteínas de Membrana/análise , Proteínas de Membrana/metabolismo , Sequência de Aminoácidos , Animais , Genômica , Humanos , Proteínas de Membrana/genética , Modelos Moleculares , Dados de Sequência Molecular , Proteômica
6.
Plant J ; 78(4): 646-58, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24617758

RESUMO

Salt stress is a widespread phenomenon, limiting plant performance in large areas around the world. Although various types of plant sodium/proton antiporters have been characterized, the physiological function of NHD1 from Arabidopsis thaliana has not been elucidated in detail so far. Here we report that the NHD1-GFP fusion protein localizes to the chloroplast envelope. Heterologous expression of AtNHD1 was sufficient to complement a salt-sensitive Escherichia coli mutant lacking its endogenous sodium/proton exchangers. Transport competence of NHD1 was confirmed using recombinant, highly purified carrier protein reconstituted into proteoliposomes, proving Na(+) /H(+) antiport. In planta NHD1 expression was found to be highest in mature and senescent leaves but was not induced by sodium chloride application. When compared to wild-type controls, nhd1 T-DNA insertion mutants showed decreased biomasses and lower chlorophyll levels after sodium feeding. Interestingly, if grown on sand and supplemented with high sodium chloride, nhd1 mutants exhibited leaf tissue Na(+) levels similar to those of wild-type plants, but the Na(+) content of chloroplasts increased significantly. These high sodium levels in mutant chloroplasts resulted in markedly impaired photosynthetic performance as revealed by a lower quantum yield of photosystem II and increased non-photochemical quenching. Moreover, high Na(+) levels might hamper activity of the plastidic bile acid/sodium symporter family protein 2 (BASS2). The resulting pyruvate deficiency might cause the observed decreased phenylalanine levels in the nhd1 mutants due to lack of precursors.


Assuntos
Arabidopsis/metabolismo , Cloroplastos/metabolismo , Fotossíntese/fisiologia , Tolerância ao Sal/fisiologia , Sódio/metabolismo , Sequência de Aminoácidos , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Transporte Biológico/genética , Transporte Biológico/fisiologia , Biomassa , Western Blotting , Clorofila/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Regulação da Expressão Gênica de Plantas , Teste de Complementação Genética , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Microscopia Confocal , Dados de Sequência Molecular , Mutação , Fotossíntese/genética , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/genética , Folhas de Planta/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Tolerância ao Sal/genética , Homologia de Sequência de Aminoácidos , Cloreto de Sódio/farmacologia , Trocadores de Sódio-Hidrogênio/genética , Trocadores de Sódio-Hidrogênio/metabolismo
7.
Curr Protoc Protein Sci ; 75: 29.8.1-29.8.28, 2014 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-24510677

RESUMO

Membrane proteins are involved in all cellular processes from signaling cascades to nutrient uptake and waste disposal. Because of these essential functions, many membrane proteins are recognized as important, yet elusive, clinical targets. Recent advances in structural biology have answered many questions about how membrane proteins function, yet one of the major bottlenecks remains the ability to obtain sufficient quantities of pure and homogeneous protein. This is particularly true for human membrane proteins, where novel expression strategies and structural techniques are needed to better characterize their function and therapeutic potential. One way to approach this challenge is to determine the structure of smaller pieces of membrane proteins that can be assembled into models of the complete protein. This unit describes the rationale for working with single or multiple transmembrane segments and provides a description of strategies and methods to express and purify them for structural and functional studies using a maltose binding protein (MBP) fusion. The bulk of the unit outlines a detailed methodology and justification for producing these peptides under native-like conditions.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Clonagem Molecular/métodos , Proteínas de Membrana/isolamento & purificação , Proteínas de Membrana/metabolismo , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Escherichia coli/genética , Interações Hidrofóbicas e Hidrofílicas , Proteínas de Membrana/química , Proteínas de Membrana/genética , Peptídeos/química , Peptídeos/genética , Peptídeos/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética
8.
J Biol Chem ; 288(34): 24609-24, 2013 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-23836910

RESUMO

Sod2 is the plasma membrane Na(+)/H(+) exchanger of the fission yeast Schizosaccharomyces pombe. It provides salt tolerance by removing excess intracellular sodium (or lithium) in exchange for protons. We examined the role of amino acid residues of transmembrane segment IV (TM IV) ((126)FPQINFLGSLLIAGCITSTDPVLSALI(152)) in activity by using alanine scanning mutagenesis and examining salt tolerance in sod2-deficient S. pombe. Two amino acids were critical for function. Mutations T144A and V147A resulted in defective proteins that did not confer salt tolerance when reintroduced into S. pombe. Sod2 protein with other alanine mutations in TM IV had little or no effect. T144D and T144K mutant proteins were inactive; however, a T144S protein was functional and provided lithium, but not sodium, tolerance and transport. Analysis of sensitivity to trypsin indicated that the mutations caused a conformational change in the Sod2 protein. We expressed and purified TM IV (amino acids 125-154). NMR analysis yielded a model with two helical regions (amino acids 128-142 and 147-154) separated by an unwound region (amino acids 143-146). Molecular modeling of the entire Sod2 protein suggested that TM IV has a structure similar to that deduced by NMR analysis and an overall structure similar to that of Escherichia coli NhaA. TM IV of Sod2 has similarities to TM V of the Zygosaccharomyces rouxii Na(+)/H(+) exchanger and TM VI of isoform 1 of mammalian Na(+)/H(+) exchanger. TM IV of Sod2 is critical to transport and may be involved in cation binding or conformational changes of the protein.


Assuntos
Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Trocadores de Sódio-Hidrogênio/metabolismo , Substituição de Aminoácidos , Escherichia coli/química , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Mutação de Sentido Incorreto , Ressonância Magnética Nuclear Biomolecular , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Schizosaccharomyces/química , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/química , Proteínas de Schizosaccharomyces pombe/genética , Trocadores de Sódio-Hidrogênio/química , Trocadores de Sódio-Hidrogênio/genética , Homologia Estrutural de Proteína
9.
Channels (Austin) ; 2(5): 329-36, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-19001864

RESUMO

Sodium proton exchangers (NHEs) constitute a large family of polytopic membrane protein transporters found in organisms across all domains of life. They are responsible for the exchange of protons for sodium ions. In archaea, bacteria, yeast and plants they provide increased salt tolerance by removing sodium in exchanger for extracellular protons. In humans they have a host of physiological functions, the most prominent of which is removal of intracellular protons in exchange for extracellular sodium. Human NHE is also involved in heart disease, cell growth and in cell differentiation. NHE's physiological roles and the intriguing pathological consequences of their actions, make them a very important target of structural and functional studies. There are nine isoforms identified to date in humans. This review provides a brief overview of the human NHE's physiological and pathological roles and cellular/tissue distribution, with special attention to the exemplar member NHE1. A summary of our knowledge to date of the structure and function of NHE1 is included focusing on a discussion of the recent discrepancies reported on the topology of NHE1. Finally we discuss a newly discovered relative of the NHE1 isoform, the Na(+)/Li(+) exchanger, focusing on its predicted topology and its potential roles in disease.


Assuntos
Trocadores de Sódio-Hidrogênio/química , Trocadores de Sódio-Hidrogênio/fisiologia , Antiporters , Humanos , Isoformas de Proteínas , Distribuição Tecidual
10.
J Biol Chem ; 283(7): 4145-54, 2008 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-18077454

RESUMO

The Na(+)/H(+) exchanger isoform 1 (NHE1) is an integral membrane protein that regulates intracellular pH by extruding an intracellular H(+) in exchange for one extracellular Na(+). The human NHE1 isoform is involved in heart disease and cell growth and proliferation. Although details of NHE1 regulation and transport are being revealed, there is little information available on the structure of the intact protein. In this report, we demonstrate overexpression, purification, and characterization of the human NHE1 (hNHE1) protein in Saccharomyces cerevisiae. Overproduction of the His-tagged protein followed by purification via nickel-nitrilotriacetic acid-agarose chromatography yielded 0.2 mg of pure protein/liter of cell culture. Reconstitution of hNHE1 in proteoliposomes demonstrated that the protein was active and responsive to an NHE1-specific inhibitor. Circular dichroism spectroscopy of purified hNHE1 revealed that the protein contains 41% alpha-helix, 23% beta-sheet, and 36% random coil. Size exclusion chromatography indicated that the protein-detergent micelle was in excess of 200 kDa, consistent with an hNHE1 dimer. Electron microscopy and single particle reconstruction of negatively stained hNHE1 confirmed that the protein was a dimer, with a compact globular domain assigned to the transmembrane region and an apical ridge assigned to the cytoplasmic domain. The transmembrane domain of the hNHE1 reconstruction was clearly dimeric, where each monomer had a size and shape consistent with the predicted 12 membrane-spanning segments for hNHE1.


Assuntos
Proteínas de Transporte de Cátions/química , Saccharomyces cerevisiae/genética , Trocadores de Sódio-Hidrogênio/química , Sequência de Bases , Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/isolamento & purificação , Cromatografia Líquida , Dicroísmo Circular , Primers do DNA , Dimerização , Humanos , Microscopia Eletrônica , Mutagênese Sítio-Dirigida , Conformação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Trocador 1 de Sódio-Hidrogênio , Trocadores de Sódio-Hidrogênio/genética , Trocadores de Sódio-Hidrogênio/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...