Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
JACS Au ; 1(4): 508-516, 2021 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-34056634

RESUMO

The lack of label-free high-throughput screening technologies presents a major bottleneck in the identification of active and selective biocatalysts, with the number of variants often exceeding the capacity of traditional analytical platforms to assess their activity in a practical time scale. Here, we show the application of direct infusion of biotransformations to the mass spectrometer (DiBT-MS) screening to a variety of enzymes, in different formats, achieving sample throughputs equivalent to ∼40 s per sample. The heat map output allows rapid selection of active enzymes within 96-well plates facilitating identification of industrially relevant biocatalysts. This DiBT-MS screening workflow has been applied to the directed evolution of a phenylalanine ammonia lyase (PAL) as a case study, enhancing its activity toward electron-rich cinnamic acid derivatives which are relevant to lignocellulosic biomass degradation. Additional benefits of the screening platform include the discovery of biocatalysts (kinases, imine reductases) with novel activities and the incorporation of ion mobility technology for the identification of product hits with increased confidence.

2.
Anal Chem ; 92(18): 12605-12612, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32786490

RESUMO

High- and ultrahigh-throughput label-free sample analysis is required by many applications, extending from environmental monitoring to drug discovery and industrial biotechnology. HTS methods predominantly are based on a targeted workflow, which can limit their scope. Mass spectrometry readily provides chemical identity and abundance for complex mixtures, and here, we use microdroplet generation microfluidics to supply picoliter aliquots for analysis at rates up to and including 33 Hz. This is demonstrated for small molecules, peptides, and proteins up to 66 kDa on three commercially available mass spectrometers from salty solutions to mimic cellular environments. Designs for chip-based interfaces that permit this coupling are presented, and the merits and challenges of these interfaces are discussed. On an Orbitrap platform droplet infusion rates of 6 Hz are used for analysis of cytochrome c, on a DTIMS Q-TOF similar rates were obtained, and on a TWIMS Q-TOF utilizing IM-MS software rates up to 33 Hz are demonstrated. The potential of this approach is demonstrated with proof of concept experiments on crude mixtures including egg white, unpurified recombinant protein, and a biotransformation supernatant.


Assuntos
Dispositivos Lab-On-A-Chip , Peptídeos/análise , Proteínas/análise , Bibliotecas de Moléculas Pequenas/análise , Espectrometria de Massas , Tamanho da Partícula , Software , Propriedades de Superfície
3.
Analyst ; 144(3): 872-891, 2019 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-30601490

RESUMO

High throughput screening (HTS) of molecular analytes is in high demand from and implemented in many areas of chemistry, medicine and industrial biotechnology including the discovery of biomarkers and the development of new chemical entities. Despite its prevalence, technical challenges remain in many of the new application areas of HTS which require rapid results from complex mixtures, for example in: screening biotransformations; targeted metabolomics; and in locating drugs and/or metabolites in biological matrices. Common to all of these are lengthy and costly sample preparation stages, involving recovery from cell cultures, extractions followed by low throughput LC-MS/MS methods or specific fluorescence measurements. In the latter the target molecules need to be inherently fluorescent or to include a fluorescent label or tag which can adversely influence a cellular system. Direct infusion mass spectrometry coupled with robotic sample infusion is a viable contender for information rich HTS with sub-second analysis times, and recent developments in ambient ionisation have heralded a new era where screening can be performed on crude cell lysates or even from live cells. Besides commercially available technologies such as RapidFire, Acoustic Mist Ionisation, and the TriVersa ChipMate there are promising new developments from academic groups. Novel applications using desorption electrospray ionisation, microfluidics, rapid LC-separation and 'one cell' direct infusion methods offer much potential for increasing throughput from 'messy' complex samples and for significantly reducing the amount of material that needs to be analysed. Here we review recent advances in HTS coupled with MS with an emphasis on methods that reduce or remove all sample preparation and will facilitate single cell screening approaches.


Assuntos
Ensaios de Triagem em Larga Escala/métodos , Substâncias Macromoleculares/análise , Espectrometria de Massas/métodos , Análise de Célula Única/métodos , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...