Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 19(24): 16087-16094, 2017 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-28598474

RESUMO

We report the observation of anisotropic longitudinal electronic relaxation in nitroxide radicals under typical dynamic nuclear polarization conditions. This anisotropy affects the efficiency of dynamic nuclear polarization at cryogenic temperatures of 4 K and high magnetic fields of 6.7 T. Under our experimental conditions, the electron paramagnetic resonance spectrum of nitroxides such as TEMPOL (4-hydroxy-2,2,6,6-tetramethylpiperidin-1-oxyl) is only partly averaged by electronic spectral diffusion, so that the relaxation times T1e(ω) vary across the spectrum. We demonstrate how the anisotropy of T1e(ω) can be taken into account in simple DNP models.

2.
Rev Sci Instrum ; 79(6): 063904, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18601414

RESUMO

Optical nuclear magnetic resonance (ONMR) is a powerful probe of electronic properties in III-V semiconductors. Larmor-beat detection (LBD) is a sensitivity optimized, time-domain NMR version of optical detection based on the Hanle effect. Combining LBD ONMR with the line-narrowing method of POWER (perturbations observed with enhanced resolution) NMR further enables atomically detailed views of local electronic features in III-Vs. POWER NMR spectra display the distribution of resonance shifts or line splittings introduced by a perturbation, such as optical excitation or application of an electric field, that is synchronized with a NMR multiple-pulse time-suspension sequence. Meanwhile, ONMR provides the requisite sensitivity and spatial selectivity to isolate local signals within macroscopic samples. Optical NMR, LBD, and the POWER method each introduce unique demands on instrumentation. Here, we detail the design and implementation of our system, including cryogenic, optical, and radio-frequency components. The result is a flexible, low-cost system with important applications in semiconductor electronics and spin physics. We also demonstrate the performance of our systems with high-resolution ONMR spectra of an epitaxial AlGaAs/GaAs heterojunction. NMR linewidths down to 4.1 Hz full width at half maximum were obtained, a 10(3)-fold resolution enhancement relative any previous optically detected NMR experiment.

3.
Phys Rev Lett ; 90(8): 087601, 2003 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-12633459

RESUMO

We present a versatile method for Fourier encoding the spatial distribution of spins detected by magnetic resonance force microscopy. Shuttling a magnetic particle in synchrony with an rf pulse sequence causes spins in a constant-field slice near the particle to precess at a rate proportional to their x or y coordinate. A two-dimensional spin-density map is recovered by a linear Fourier transform of a set of integrated force signals. Performance of the rf sequence is demonstrated experimentally and numerical simulations show that the method can achieve nanoscale resolution. Our approach offers a new route to manipulating spin wave functions down to the atomic scale.


Assuntos
Análise de Fourier , Espectroscopia de Ressonância Magnética/métodos , Microscopia de Força Atômica/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...