Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 17813, 2023 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-37857689

RESUMO

The study aimed to compare two substrates, soil and deadwood, for the regeneration of silver fir (Abies alba Mill.) seedlings. Three-year-old fir seedlings growing both on deadwood and in the soil were collected. The examination involved determining the physical, chemical, and biochemical properties of soil and deadwood, as well as assessing the morphology of the roots and the nutrition of seedlings growing on the soil and deadwood. The examined substrates differed in physical, chemical and biochemical properties. It was shown that strongly decomposed fir logs are a good substrate for the growth of fir seedlings, mainly due to the high content of exchangeable cations (especially calcium, magnesium and potassium) and high phosphorus and nitrogen content. The type of substrate had a significant impact on the root morphology of fir seedlings. In our study, the most responsive root traits to differences in growing substrates were specific root area (SRA) and specific root length (SRL). Our analyses did not confirm significant differences in the stoichiometry of C, N and P in the roots and needles of seedlings grown on different substrates. The stoichiometry of roots and needles suggests no limitations in the uptake of nutrients by seedlings growing on deadwood. This study validated that heavily decomposed wood can provide favourable microhabitats for the growth of the young generation of fir.


Assuntos
Abies , Ecossistema , Plântula , Estado Nutricional , Florestas , Solo
2.
AoB Plants ; 13(1): plaa070, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33604013

RESUMO

Hybridization and introgression are important processes influencing the genetic diversity and evolution of species. These processes are of particular importance in protected areas, where they can lead to the formation of hybrids between native and foreign species and may ultimately result in the loss of parental species from their natural range. Despite their importance, the contribution of hybridization and introgression to genetic diversity in Sorbus genus remains not fully recognized. We analysed the genetic and morphological variability of several Sorbus species including native (Sorbus aria), foreign (S. intermedia) and potentially hybrid (S. carpatica) individuals from the Polish Carpathian range. Patterns of variation at 13 nuclear microsatellite loci show hybridization between the tested species and confirm the existence of the hybrid form S. carpatica. Biometric analysis on leaves, based of 10 metric features and three parameters, identified several characters for preliminary taxonomic classification; however, none of them could be used as a fully diagnostic marker for faultless annotation of S. intermedia and S. carpatica. The genetic structure analysis indicated complex patterns of population differentiation and its diverse origin. The results allow assessment of genetic variation and identification of parental species participating in hybridization. This knowledge will advance the management of genetic diversity and development of conservation strategies for efficient maintenance of the unique protected ecosystem.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...