Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Microbiol Rep ; 5(3): 353-66, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23754716

RESUMO

Fungal nitrogen metabolism plays a fundamental role in function of mycorrhizal symbiosis and consequently in nutrient cycling of terrestrial ecosystems. Despite its global ecological relevance the information on control and molecular regulation of nitrogen utilization in mycorrhizal fungi is very limited. We have extended the nitrate utilization RNA silencing studies of the model mycorrhizal basidiomycete, Laccaria bicolor, by altering the expression of LbNrt, the sole nitrate transporter-encoding gene of the fungus. Here we report the first nutrient transporter mutants for mycorrhizal fungi. Silencing of LbNrt results in fungal strains with minimal detectable LbNrt transcript levels, significantly reduced growth capacity on nitrate and altered symbiotic interaction with poplar. Transporter silencing also creates marked co-downregulation of whole Laccaria fHANT-AC (fungal high-affinity nitrate assimilation cluster). Most importantly, this effect on the nitrate utilization pathway appears independent of extracellular nitrate or nitrogen status of the fungus. Our results indicate a novel and central nitrate uptake-independent regulatory role for a eukaryotic nitrate transporter. The possible cellular mechanisms behind this regulation mode are discussed in the light of current knowledge on NRT2-type nitrate transporters in different eukaryotes.


Assuntos
Proteínas de Transporte de Ânions/genética , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica , Laccaria/genética , Micorrizas/genética , RNA Fúngico/genética , Proteínas de Transporte de Ânions/antagonistas & inibidores , Proteínas de Transporte de Ânions/metabolismo , Proteínas Fúngicas/antagonistas & inibidores , Proteínas Fúngicas/metabolismo , Laccaria/metabolismo , Micorrizas/metabolismo , Transportadores de Nitrato , Nitratos/metabolismo , Nitrogênio/metabolismo , Populus/microbiologia , Interferência de RNA , RNA Fúngico/antagonistas & inibidores , RNA Fúngico/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Simbiose/fisiologia
2.
Bioeng Bugs ; 2(1): 38-44, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21636986

RESUMO

Most boreal and temperate forest trees form a mutualistic symbiosis with soil borne fungi called ectomycorrhiza (ECM). In this association both partners benefit due to nutrient exchange at the symbiotic interface. Laccaria bicolor is the first mycorrhizal fungus with its genome sequenced thus making possible for the first time to analyze genome scale gene expression profiles of a mutualistic fungus. However, in order to be able to take full advantage of the genome sequence, reverse genetic tools are needed. Among them a high throughput transformation system is crucial. Herein we present a detailed protocol for genetic transformation of L. bicolor by means of Agrobacterium tumefaciens with emphasis on critical steps affecting the success and efficiency of the approach.


Assuntos
Agrobacterium tumefaciens/fisiologia , Laccaria/fisiologia , Agrobacterium tumefaciens/metabolismo , Laccaria/metabolismo
3.
Microb Biotechnol ; 3(2): 178-200, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21255319

RESUMO

pSILBAγ silencing vector was constructed for efficient RNA silencing triggering in the model mycorrhizal fungus Laccaria bicolor. This cloning vector carries the Agaricus bisporus gpdII promoter, two multiple cloning sites separated by a L. bicolor nitrate reductase intron and the Aspergillus nidulans trpC terminator. pSILBAγ allows an easy oriented two-step PCR cloning of hairpin sequences to be expressed in basidiomycetes. With one further cloning step into pHg, a pCAMBIA1300-based binary vector carrying a hygromycin resistance cassette, the pHg/pSILBAγ plasmid is used for Agrobacterium-mediated transformation. The pHg/pSILBAγ system results in predominantly single integrations of RNA silencing triggering T-DNAs in the fungal genome and the integration sites of the transgenes can be resolved by plasmid rescue. pSILBAγ construct and two other pSILBA plasmid variants (pSILBA and pSILBAα) were evaluated for their capacity to silence Laccaria nitrate reductase gene. While all pSILBA variants tested resulted in up to 65-76% of transformants with reduced growth on nitrate, pSILBAγ produced the highest number (65%) of strongly affected fungal strains. The strongly silenced phenotype was shown to correlate with T-DNA integration in transcriptionally active genomic sites. pHg/pSILBAγ was shown to produce T-DNAs with minimum CpG methylation in transgene promoter regions which assures the maximum silencing trigger production in Laccaria. Methylation of the target endogene was only slight in RNA silencing triggered with constructs carrying an intronic spacer hairpin sequence. The silencing capacity of the pHg/pSILBAγ was further tested with Laccaria inositol-1,4,5-triphosphate 5-phosphatase gene. Besides its use in silencing triggering, the herein described plasmid system can also be used for transgene expression in Laccaria. pHg/pSILBAγ silencing system is optimized for L. bicolor but it should be highly useful also for other homobasidiomycetes, group of fungi currently lacking molecular tools for RNA silencing.


Assuntos
Técnicas de Silenciamento de Genes , Inativação Gênica , Vetores Genéticos , Laccaria/genética , RNA Interferente Pequeno/genética , Antifúngicos/farmacologia , Cinamatos/farmacologia , Proteínas Fúngicas/antagonistas & inibidores , Higromicina B/análogos & derivados , Higromicina B/farmacologia , Nitrato Redutases/antagonistas & inibidores , Regiões Promotoras Genéticas , RNA Interferente Pequeno/metabolismo , Seleção Genética , Transcrição Gênica
4.
Bioeng Bugs ; 1(5): 354-8, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-21326837

RESUMO

Ectomycorrhiza (ECM) is a mutualistic association between fungi and the roots of the vast majority of trees. These include numerous ecologically and economically relevant species and the participating fungal symbionts are predominantly filamentous basidiomycetes. In natural ecosystems the plant nutrient uptake from soil takes place via the extraradical mycelia of these ECM mycosimbionts as a trade for plant photosyntates. The symbiotic phase in the life cycle of ECM basidiomycetes is the dikaryotic hyphae. Therefore, studies on symbiotic relevant gene functions require the inactivation of both gene copies in these dikaryotic fungi. RNA silencing is a eukaryotic sequence homology-dependent degradation of target RNAs which is believed to have evolved as a protection mechanism against invading nucleic acids. In different eukaryotic organisms, including fungi, the RNA silencing pathway can be artificially triggered to target and degrade gene transcripts of interest, resulting in gene knock-down. Most importantly, RNA silencing can act at the cytosolic level affecting mRNAs originating from several gene copies and different nuclei thus offering an efficient means of altering gene expression in dikaryotic organisms. Therefore, the pHg/pSILBAγ silencing vector was constructed for efficient RNA silencing triggering in the model mycorrhizal fungus Laccaria bicolor. This cloning vector carries the Agaricus bisporus gpdII-promoter, two multiple cloning sites separated by a L. bicolor nitrate reductase intron and the Aspergillus nidulans trpC terminator. pSILBAγ allows an easy two-step PCR-cloning of hairpin sequences to be expressed in basidiomycetes. With one further cloning step into pHg, a pCAMBIA1300-based binary vector carrying a hygromycin resistance cassette, makes the pHg/pSILBAγ plasmid compatible with Agrobacterium-mediated transformation. The pHg/pSILBAγ-system results in predominantly single integrations of RNA silencing triggering T-DNAs in the fungal genome and the integration sites of the transgenes can be resolved by plasmid rescue. Besides the optimized use in L. bicolor, general consideration was taken to build a vector system with maximum compatibility with other homobasidiomycetes and different transformation techniques.


Assuntos
Técnicas de Silenciamento de Genes/métodos , Laccaria/genética , Micorrizas/genética , Interferência de RNA , RNA Interferente Pequeno/genética , Agrobacterium/genética , Agrobacterium/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Técnicas de Silenciamento de Genes/instrumentação , Vetores Genéticos/genética , Vetores Genéticos/metabolismo , Sequências Repetidas Invertidas , Laccaria/fisiologia , Micorrizas/fisiologia , Nitrato Redutases/genética , Nitrato Redutases/metabolismo , RNA Interferente Pequeno/química , Simbiose , Transformação Genética , Árvores/microbiologia , Árvores/fisiologia
5.
Environ Microbiol Rep ; 2(4): 541-53, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23766224

RESUMO

In boreal and temperate forest ectomycorrhizal fungi play a crucial role in nitrogen cycling by assimilating nitrogenous compounds from soil and transferring them to tree hosts. The expression profile of fHANT-AC genes, nitrate transporter (Lbnrt), nitrate reductase (Lbnr) and nitrite reductase (Lbnir), responsible for nitrate utilization in the ectomycorrhizal fungus Laccaria bicolor, was studied on variable N regimens. The three genes were shown to be under a common regulation: repressed in the presence of ammonium while growth on nitrate resulted in high transcripts accumulation. The presence of nitrate was shown not to be indispensable for activation of Laccaria fHANT-AC as also N starvation and growth on urea and l-asparagine resulted in high transcript levels. Equally high expression of Laccaria fHANT-AC genes was detected in mycelia grown on variable concentrations of l-glutamine. This finding shows that in L. bicolor N metabolite repression of fHANT-AC is not signalled via l-glutamine like described in ascomycetes. The expression patterns of Lbnrt and Lbnir were also studied in an Lbnr RNA-silenced Laccaria strain. No differences were observed on the N source regulation or the degree of transcript accumulation of these genes, indicating that the presence of high nitrate reductase activity is not a core regulator of L. bicolor fHANT-AC expression. The simultaneous utilization of nitrate and organic N sources, already suggested by high transcript levels of Laccaria fHANT-AC genes on organic N, was supported by the increase of culture medium pH as a result of nitrate transporter activity. The possible ecological and evolutionary significance of the herein reported high regulatory flexibility of Laccaria nitrate utilization pathway for ectomycorrizal fungi and the ectomycorrhizal symbiosis is discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...