Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 1133, 2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36882408

RESUMO

Extreme precipitation is projected to intensify with warming, but how this will manifest locally through time is uncertain. Here, we exploit an ensemble of convection-permitting transient simulations to examine the emerging signal in local hourly rainfall extremes over 100-years. We show rainfall events in the UK exceeding 20 mm/h that can cause flash floods are 4-times as frequent by 2070s under high emissions; in contrast, a coarser resolution regional model shows only a 2.6x increase. With every degree of regional warming, the intensity of extreme downpours increases by 5-15%. Regional records of local hourly rainfall occur 40% more often than in the absence of warming. However, these changes are not realised as a smooth trend. Instead, as a result of internal variability, extreme years with record-breaking events may be followed by multiple decades with no new local rainfall records. The tendency for extreme years to cluster poses key challenges for communities trying to adapt.

2.
Philos Trans A Math Phys Eng Sci ; 379(2195): 20190542, 2021 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-33641464

RESUMO

A large number of recent studies have aimed at understanding short-duration rainfall extremes, due to their impacts on flash floods, landslides and debris flows and potential for these to worsen with global warming. This has been led in a concerted international effort by the INTENSE Crosscutting Project of the GEWEX (Global Energy and Water Exchanges) Hydroclimatology Panel. Here, we summarize the main findings so far and suggest future directions for research, including: the benefits of convection-permitting climate modelling; towards understanding mechanisms of change; the usefulness of temperature-scaling relations; towards detecting and attributing extreme rainfall change; and the need for international coordination and collaboration. Evidence suggests that the intensity of long-duration (1 day+) heavy precipitation increases with climate warming close to the Clausius-Clapeyron (CC) rate (6-7% K-1), although large-scale circulation changes affect this response regionally. However, rare events can scale at higher rates, and localized heavy short-duration (hourly and sub-hourly) intensities can respond more strongly (e.g. 2 × CC instead of CC). Day-to-day scaling of short-duration intensities supports a higher scaling, with mechanisms proposed for this related to local-scale dynamics of convective storms, but its relevance to climate change is not clear. Uncertainty in changes to precipitation extremes remains and is influenced by many factors, including large-scale circulation, convective storm dynamics andstratification. Despite this, recent research has increased confidence in both the detectability and understanding of changes in various aspects of intense short-duration rainfall. To make further progress, the international coordination of datasets, model experiments and evaluations will be required, with consistent and standardized comparison methods and metrics, and recommendations are made for these frameworks. This article is part of a discussion meeting issue 'Intensification of short-duration rainfall extremes and implications for flash flood risks'.

3.
Clim Dyn ; 55(3): 409-428, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32713994

RESUMO

For the first time, we analyze 2.2 km UK Met Office Unified Model convection-permitting model (CPM) projections for a pan-European domain. These new simulations represent a major increase in domain size, allowing us to examine the benefits of CPMs across a range of European climates. We find a change to the seasonality of extreme precipitation with warming. In particular, there is a relatively muted response for summer, which contrasts with much larger increases in autumn and winter. This flattens the hourly extreme precipitation seasonal cycle across Northern Europe which has a summer peak in the present climate. Over the Western Mediterranean, where autumn is the main extreme precipitation season, there is a regional increase in hourly extreme precipitation frequency, but local changes for lower precipitation thresholds are often insignificant. For mean precipitation, decreases are projected across Europe in summer, smaller decreases in autumn, and increases in winter; comparable changes are seen in the driving general circulation model (GCM) simulations. The winter mean increase is accompanied by a large decrease of winter mean snowfall. Comparing the driving GCM projections with the CPM ones, the CPMs show a robust enhanced intensification of precipitation extremes at the convection-permitting scale compared to coarser resolution climate model projections across various European regions for summer and autumn.

4.
Nat Commun ; 10(1): 1794, 2019 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-31015416

RESUMO

African society is particularly vulnerable to climate change. The representation of convection in climate models has so far restricted our ability to accurately simulate African weather extremes, limiting climate change predictions. Here we show results from climate change experiments with a convection-permitting (4.5 km grid-spacing) model, for the first time over an Africa-wide domain (CP4A). The model realistically captures hourly rainfall characteristics, unlike coarser resolution models. CP4A shows greater future increases in extreme 3-hourly precipitation compared to a convection-parameterised 25 km model (R25). CP4A also shows future increases in dry spell length during the wet season over western and central Africa, weaker or not apparent in R25. These differences relate to the more realistic representation of convection in CP4A, and its response to increasing atmospheric moisture and stability. We conclude that, with the more accurate representation of convection, projected changes in both wet and dry extremes over Africa may be more severe.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...