Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Mol Cancer Ther ; 23(3): 316-329, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-37816504

RESUMO

Expression of the serine/threonine kinase never in mitosis gene A (NIMA)-related kinase 2 (NEK2) is essential for entry into mitosis via its role in facilitating centrosome separation. Its overactivity can lead to tumorigenesis and drug resistance through the activation of several oncogenic pathways, including AKT. Although the cancer-enabling activities of NEK2 are documented in many malignancies, including correlations with poor survival in myeloma, breast, and non-small cell lung cancer, little is known about the role of NEK2 in lymphoma. Here, in tumors from patients with diffuse large B-cell lymphoma (DLBCL), the most common, aggressive non-Hodgkin lymphoma, we found a high abundance of NEK2 mRNA and protein associated with an inferior overall survival. Using our recently developed NEK2 inhibitor, NBI-961, we discovered that DLBCL cell lines and patient-derived cells exhibit a dependency on NEK2 for their viability. This compromised cell fitness was directly attributable to efficient NEK2 inhibition and proteasomal degradation by NBI-961. In a subset of particularly sensitive DLBCL cells, NBI-961 induced G2/mitosis arrest and apoptosis. In contrast, an existing indirect NEK2 inhibitor, INH154, did not prevent NEK2 autophosphorylation, induce NEK2 proteasomal degradation, or affect cell viability. Global proteomics and phospho-proteomics revealed that NEK2 orchestrates cell-cycle and apoptotic pathways through regulation of both known and new signaling molecules. We show the loss of NEK2-sensitized DLBCL to the chemotherapy agents, doxorubicin and vincristine, and effectively suppressed tumor growth in mice. These studies establish the oncogenic activity of NEK2 in DLBCL and set the foundation for development of anti-NEK2 therapeutic strategies in this frequently refractory and relapse-prone cancer.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Linfoma Difuso de Grandes Células B , Linfoma , Humanos , Animais , Camundongos , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Quinases Relacionadas a NIMA/genética , Linhagem Celular Tumoral , Linfoma Difuso de Grandes Células B/tratamento farmacológico , Linfoma Difuso de Grandes Células B/genética
2.
PLoS Pathog ; 19(1): e1011089, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36638143

RESUMO

Primary effusion lymphoma (PEL) caused by Kaposi sarcoma-associated herpesvirus (KSHV) is an aggressive malignancy with poor prognosis even under chemotherapy. Currently, there is no specific treatment for PEL therefore requiring new therapies. Both histone deacetylases (HDACs) and bromodomain-containing protein 4 (BRD4) have been found as therapeutic targets for PEL through inducing viral lytic reactivation. However, the strategy of dual targeting with one agent and potential synergistic effects have never been explored. In the current study, we first demonstrated the synergistic effect of concurrently targeting HDACs and BRD4 on KSHV reactivation by using SAHA or entinostat (HDACs inhibitors) and (+)-JQ1 (BRD4 inhibitor), which indicated dual blockage of HDACs/BRD4 is a viable therapeutic approach. We were then able to rationally design and synthesize a series of new small-molecule inhibitors targeting HDACs and BRD4 with a balanced activity profile by generating a hybrid of the key binding motifs between (+)-JQ1 and entinostat or SAHA. Upon two iterative screenings of optimized compounds, a pair of epimers, 009P1 and 009P2, were identified to better inhibit the growth of KSHV positive lymphomas compared to (+)-JQ1 or SAHA alone at low nanomolar concentrations, but not KSHV negative control cells or normal cells. Mechanistic studies of 009P1 and 009P2 demonstrated significantly enhanced viral reactivation, cell cycle arrest and apoptosis in KSHV+ lymphomas through dually targeting HDACs and BRD4 signaling activities. Importantly, in vivo preclinical studies showed that 009P1 and 009P2 dramatically suppressed KSHV+ lymphoma progression with oral bioavailability and minimal visible toxicity. These data together provide a novel strategy for the development of agents for inducing lytic activation-based therapies against these viruses-associated malignancies.


Assuntos
Herpesvirus Humano 8 , Linfoma de Efusão Primária , Sarcoma de Kaposi , Humanos , Fatores de Transcrição/metabolismo , Proteínas Nucleares/metabolismo , Inibidores de Histona Desacetilases/farmacologia , Herpesvirus Humano 8/fisiologia , Linhagem Celular Tumoral , Proteínas de Ciclo Celular/metabolismo
3.
Genes (Basel) ; 13(7)2022 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-35885931

RESUMO

The aggressive nature of the activated B cell such as (ABC) subtype of diffuse large B cell (DLBCL) is frequently associated with altered B cell Receptor (BCR) signaling through the activation of key components including the scaffolding protein, CARD11. Most inhibitors, such as ibrutinib, target downstream BCR kinases with often modest and temporary responses for DLBCL patients. Here, we pursue an alternative strategy to target the BCR pathway by leveraging a novel DNA secondary structure to repress transcription. We discovered that a highly guanine (G)-rich element within the CARD11 promoter forms a stable G-quadruplex (G4) using circular dichroism and polymerase stop biophysical techniques. We then identified a small molecule, naptho(2,1-b)furan-1-ethanol,2-nitro- (NSC373981), from a fluorescence-resonance energy transfer-based screen that stabilized CARD11 G4 and inhibited CARD11 transcription in DLBCL cells. In generating and testing analogs of NSC373981, we determined that the nitro group is likely essential for the downregulation of CARD11 and interaction with CARD11 G4, and the removal of the ethanol side chain enhanced this activity. Of note, the expression of BCL2 and MYC, two other key oncogenes in DLBCL pathology with known promoter G4 structures, were often concurrently repressed with NSC373981 and the highly potent R158 analog. Our findings highlight a novel approach to treat aggressive DLBCL by silencing CARD11 gene expression that warrants further investigation.


Assuntos
Proteínas Adaptadoras de Sinalização CARD , Linfoma Difuso de Grandes Células B , Proteínas Reguladoras de Apoptose/genética , Proteínas Adaptadoras de Sinalização CARD/genética , Etanol , Furanos , Guanilato Ciclase/genética , Guanilato Ciclase/metabolismo , Humanos , Linfoma Difuso de Grandes Células B/genética , Linfoma Difuso de Grandes Células B/metabolismo , Linfoma Difuso de Grandes Células B/patologia , Oncogenes/genética
4.
J Cell Mol Med ; 26(9): 2557-2565, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35318805

RESUMO

Although small-cell lung cancer (SCLC) accounts for a small fraction of lung cancer cases (~15%), the prognosis of patients with SCLC is poor with an average overall survival period of a few months without treatment. Current treatments include standard chemotherapy, which has minimal efficacy and a newly developed immunotherapy that thus far, benefits a limited number of patients. In the current study, we screened a natural product library and identified 5 natural compounds, in particular tubercidin and lycorine HCl, that display prominent anti-SCLC activities in vitro and in vivo. Subsequent RNA-sequencing and functional validation assays revealed the anti-SCLC mechanisms of these new compounds, and further identified new cellular factors such as BCAT1 as a potential therapeutic target with clinical implication in SCLC patients. Taken together, our study provides promising new directions for fighting this aggressive lung cancer.


Assuntos
Neoplasias Pulmonares , Carcinoma de Pequenas Células do Pulmão , Alcaloides de Amaryllidaceae , Humanos , Imunoterapia , Fenantridinas , Carcinoma de Pequenas Células do Pulmão/tratamento farmacológico , Transaminases/uso terapêutico , Tubercidina/uso terapêutico
5.
Antimicrob Agents Chemother ; 66(3): e0239521, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35041508

RESUMO

Recently, remdesivir and molnupiravir were approved for treating COVID-19 caused by SARS-CoV-2 infection. However, little is known about the impact of these drugs on other viruses preexisted in COVID-19 patients. Here we report that remdesivir but not molnupiravir induced lytic reactivation of Kaposi's sarcoma-associated herpesvirus (KSHV) and Epstein-Barr virus (EBV), two major oncogenic herpesviruses. Remdesivir induced mature virion production from latently infected cells. Mechanistic studies showed that remdesivir induced KSHV and EBV reactivation by regulating several intracellular signaling pathways.


Assuntos
Tratamento Farmacológico da COVID-19 , Infecções por Vírus Epstein-Barr , Herpesvirus Humano 8 , Monofosfato de Adenosina/análogos & derivados , Alanina/análogos & derivados , Herpesvirus Humano 4/fisiologia , Humanos , SARS-CoV-2 , Transdução de Sinais , Ativação Viral
6.
Blood Adv ; 6(3): 808-817, 2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-34807986

RESUMO

Multiple myeloma (MM) patients frequently attain a bone marrow (BM) minimal residual disease (MRD) negativity status in response to treatment. We identified 568 patients who achieved BM MRD negativity following autologous stem cell transplantation (ASCT) and maintenance combination therapy with an immunomodulatory agent and a proteasome inhibitor. BM MRD was evaluated by next-generation flow cytometry (sensitivity of 10-5 cells) at 3- to 6-month intervals. With a median follow-up of 9.9 years from diagnosis (range, 0.4-30.9), 61% of patients maintained MRD negativity, whereas 39% experienced MRD conversion at a median of 6.3 years (range, 1.4-25). The highest risk of MRD conversion occurred within the first 5 years after treatment and was observed more often in patients with abnormal metaphase cytogenetic abnormalities (95% vs 84%; P = .001). MRD conversion was associated with a high risk of relapse and preceded it by a median of 1.0 years (range, 0-4.9). However, 27% of MRD conversion-positive patients had not yet experienced a clinical relapse, with a median follow-up of 9.3 years (range, 2.2-21.2). Landmark analyses using time from ASCT revealed patients with MRD conversion during the first 3 years had an inferior overall and progression-free survival compared with patients with sustained MRD negativity. MRD conversion correctly predicted relapse in 70%, demonstrating the utility of serial BM MRD assessment to complement standard laboratory and imaging to make informed salvage therapy decisions.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Mieloma Múltiplo , Medula Óssea , Humanos , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/terapia , Recidiva Local de Neoplasia , Neoplasia Residual/diagnóstico , Transplante Autólogo , Resultado do Tratamento
8.
Bone ; 146: 115876, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33556629

RESUMO

Multiple myeloma (MM) patients frequently present with extensive osteolytic bone lesions. However, the impact of myeloma treatment on focal lytic lesion remineralization has not been extensively studied. In this study, the effect of anti-myeloma treatment on the extent of bone remineralization was examined and potential mediators identified. Newly diagnosed MM patients enrolled in the Total Therapy 4 and 5 (TT4; n = 231, TT5; n = 64) protocols were longitudinally evaluated for changes in radiological parameters for a median of 6.1 years. Bone remineralization was defined as a sclerotic CT change within the lytic lesion and quantified as a percentage of remineralization, using the initial lesion size as a reference. Such changes were correlated to clinical and biochemical parameters, and the gene expression profile of bone marrow biopsy. Overall, remineralization occurred in 72% of patients (213/295). Of those patients that experienced remineralization, 36% (107/295) achieved at least 25% of bone remineralization. Patients with high-risk disease defined by gene expression profile signature (GEP70 ≥ 0.66) experienced significant remineralization compared to low-risk MM. Female patients were also more likely to experience bone remineralization and in a shorter median time (2.0 vs. 3.3 y). Factors such as serum alkaline phosphatase along with high levels of RUNX2 and SOX4 gene expression correlated with increasing extent of bone remineralization. This analysis demonstrated significant remineralization of lytic lesions in MM patients treated on TT clinical trials. While the underlying mechanism remains elusive these findings support the hypothesis that patient baseline bone-related factors play a fundamental role in the skeletal repair of bone lesions in MM that provide new opportunities for improving patient outcomes.


Assuntos
Doenças Ósseas , Mieloma Múltiplo , Arkansas , Medula Óssea , Osso e Ossos , Feminino , Humanos , Mieloma Múltiplo/tratamento farmacológico , Fatores de Transcrição SOXC
9.
Pharmaceuticals (Basel) ; 14(2)2021 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-33513764

RESUMO

Stretches of cytosine-rich DNA are capable of adopting a dynamic secondary structure, the i-motif. When within promoter regions, the i-motif has the potential to act as a molecular switch for controlling gene expression. However, i-motif structures in genomic areas of repetitive nucleotide sequences may play a role in facilitating or hindering expansion of these DNA elements. Despite research on the i-motif trailing behind the complementary G-quadruplex structure, recent discoveries including the identification of a specific i-motif antibody are pushing this field forward. This perspective reviews initial and current work characterizing the i-motif and providing insight into the biological function of this DNA structure, with a focus on how the i-motif can serve as a molecular target for developing new therapeutic approaches to modulate gene expression and extension of repetitive DNA.

10.
NAR Cancer ; 2(4): zcaa029, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33094287

RESUMO

Diffuse large B-cell lymphoma (DLBCL) is a molecularly heterogeneous group of malignancies with frequent genetic abnormalities. G-quadruplex (G4) DNA structures may facilitate this genomic instability through association with activation-induced cytidine deaminase (AID), an antibody diversification enzyme implicated in mutation of oncogenes in B-cell lymphomas. Chromatin immunoprecipitation sequencing analyses in this study revealed that AID hotspots in both activated B cells and lymphoma cells in vitro were highly enriched for G4 elements. A representative set of these targeted sequences was validated for characteristic, stable G4 structure formation including previously unknown G4s in lymphoma-associated genes, CBFA2T3, SPIB, BCL6, HLA-DRB5 and MEF2C, along with the established BCL2 and MYC structures. Frequent genome-wide G4 formation was also detected for the first time in DLBCL patient-derived tissues using BG4, a structure-specific G4 antibody. Tumors with greater staining were more likely to have concurrent BCL2 and MYC oncogene amplification and BCL2 mutations. Ninety-seven percent of the BCL2 mutations occurred within G4 sites that overlapped with AID binding. G4 localization at sites of mutation, and within aggressive DLBCL tumors harboring amplified BCL2 and MYC, supports a role for G4 structures in events that lead to a loss of genomic integrity, a critical step in B-cell lymphomagenesis.

11.
AIDS ; 34(14): 2025-2035, 2020 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-32773475

RESUMO

OBJECTIVE: The increased risk for persons living with HIV to develop diffuse large B-cell lymphoma (DLBCL) even in the post-antiretroviral therapy eras suggests a role beyond immunosuppression in lymphoma development. However, the mechanisms leading to lymphoma in the HIV setting are not fully understood. HIV is known to induce activation-induced cytidine deaminase (AID) levels in nonneoplastic B cells in vitro and chronic AID expression may play an important role in lymphomagenesis. Although AID expression is observed in B-cell lymphoma, studies in HIV-associated DLBCL are limited. DESIGN: In this study, we conducted a retrospective review of DLBCL tissues from patients with and without HIV infection to compare expression of AID and B-cell receptors potentially involved in HIV and B-cell interaction. METHODS: We evaluated DLBCL formalin-fixed paraffin-embedded tissues from 72 HIV-seropositive and 58 HIV-seronegative patients for AID, DC-SIGN, and CD40 protein expression. BCL2 and MYC, two well established prognostically significant oncoproteins in DLBCL, were also assessed at the protein and mRNA levels. Subset analysis was performed according to DLBCL subtype and EBV status. RESULTS: Of note, AID expression was more frequent in HIV-associated DLBCL compared with non-HIV-associated DLBCL regardless of cell-of-origin subtype, and also displayed significantly less BCL2 expression. Despite no direct correlation with AID expression, the HIV-DLBCL tissues also exhibited high levels of the DC-SIGN receptor. CONCLUSION: Collectively, these findings support a potential role for AID in the pathogenesis of HIV-associated lymphomas and suggest the need of further investigations into the involvement of the DC-SIGN receptor-signaling pathway.


Assuntos
Biomarcadores Tumorais/análise , Citidina Desaminase/metabolismo , Infecções por HIV/complicações , Linfoma Difuso de Grandes Células B/complicações , Linfoma Difuso de Grandes Células B/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/análise , Linfócitos B , Moléculas de Adesão Celular , Citidina Desaminase/genética , Genes myc , Soronegatividade para HIV/fisiologia , Soropositividade para HIV/sangue , Humanos , Lectinas Tipo C , Linfoma de Células B/genética , Linfoma Difuso de Grandes Células B/genética , RNA Mensageiro , Receptores de Superfície Celular , Estudos Retrospectivos , Fator 3 Associado a Receptor de TNF
12.
Mol Omics ; 16(4): 316-326, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32347222

RESUMO

Quantitative proteomics generates large datasets with increasing depth and quantitative information. With the advance of mass spectrometry and increasingly larger data sets, streamlined methodologies and tools for analysis and visualization of phosphoproteomics are needed both at the protein and modified peptide levels. To assist in addressing this need, we developed ProteoViz, which includes a set of R scripts that perform normalization and differential expression analysis of both the proteins and enriched phosphorylated peptides, and identify sequence motifs, kinases, and gene set enrichment pathways. The tool generates interactive visualization plots that allow users to interact with the phosphoproteomics results and quickly identify proteins and phosphorylated peptides of interest for their biological study. The tool also links significant phosphosites with sequence motifs and pathways that will help explain the experimental conditions and guide future experiments. Here, we present the workflow and demonstrate its functionality by analyzing a phosphoproteomic data set from two lymphoma cell lines treated with kinase inhibitors. The scripts and data are freely available at and via the ProteomeXchange with identifier PXD015606.


Assuntos
Biologia Computacional/métodos , Fosfoproteínas/metabolismo , Mapeamento de Interação de Proteínas/métodos , Proteômica , Software , Motivos de Aminoácidos , Linhagem Celular , Bases de Dados Genéticas , Feminino , Humanos , Masculino , Espectrometria de Massas/métodos , Ligação Proteica , Proteômica/métodos , Transdução de Sinais , Fluxo de Trabalho
13.
Int J Cancer ; 145(11): 3078-3088, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31044434

RESUMO

Diffuse large B-cell lymphoma (DLBCL) is up to 17-fold more likely to occur, follows a more aggressive clinical course and frequently presents at advanced stages in HIV infected (+) individuals compared to HIV negative (-) individuals. However, the molecular pathology underpinning the clinical features of DLBCL in HIV(+) patients relative to the general population is poorly understood. We performed a retrospective study examining the transcriptional, genomic and protein expression differences between HIV(+) and HIV(-) germinal center B-cell (GCB) DLBCL cases using digital gene expression analysis, array comparative genomic hybridization (CGH) and immunohistochemistry (IHC). Genes associated with cell cycle progression (CCNA2, CCNB1, CDC25A, E2F1), DNA replication (MCM2, MCM4, MCM7) and DNA damage repair, including eight Fanconi anemia genes (FANCA, FANCD1/BRCA2, FANCE, FANCG, FANCR/RAD51, FANCS/BRCA1, FANCT/UBE2T, FANCV/MAD2L2), were significantly increased in HIV(+) GCB-DLBCL tumors compared to HIV(-) tumors. In contrast, genes associated with cell cycle inhibition (CDKN1A, CDKN1B) as well as apoptosis regulating BCL2 family members (BCL2, BAX, BIM, BMF, PUMA) were significantly decreased in the HIV(+) cohort. BCL2 IHC confirmed this expression. Array CGH data revealed that HIV(+) GCB-DLBCL tumors have fewer copy number variations than their HIV(-) counterparts, indicating enhanced genomic stability. Together, the results show that HIV(+) GCB-DLBCL is a distinct molecular malignancy from HIV(-) GCB-DLBCL; with an increased proliferative capacity, confirmed by Ki67 IHC staining, and enhanced genomic stability, the latter of which is likely related to the enhanced expression of DNA repair genes.


Assuntos
Reparo do DNA , Perfilação da Expressão Gênica/métodos , Instabilidade Genômica , Infecções por HIV/genética , Linfoma Difuso de Grandes Células B/genética , Adulto , Idoso , Hibridização Genômica Comparativa , Feminino , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Imuno-Histoquímica , Linfoma Difuso de Grandes Células B/virologia , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos
14.
Viruses ; 11(12)2019 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-31888174

RESUMO

Viral lymphomagenesis induced by infection with oncogenic viruses, such as Kaposi's sarcoma associated herpesvirus (KSHV), Epstein-Barr virus (EBV) and human T-cell leukemia virus (HTLV-1), represents a group of aggressive malignancies with a diverse range of pathological features. Combined chemotherapy remains the standard of care for these virus-associated lymphomas; however, frequent chemoresistance is a barrier to achieving successful long-term disease-free survival. There is increasing evidence that indicates virus-associated lymphomas display more resistance to cytotoxic chemotherapeutic agents than that observed in solid tumors. Although the tumor microenvironment and genetic changes, such as key oncogene mutations, are closely related to chemoresistance, some studies demonstrate that the components of oncogenic viruses themselves play pivotal roles in the multidrug chemoresistance of lymphoma cells. In this review, we summarize recent advances in the understanding of the mechanisms through which oncogenic viruses mediate lymphoma cell chemoresistance, with a particular focus on KSHV and EBV, two major oncogenic viruses. We also discuss the current challenges to overcome these obstacles in the treatment of virus-associated lymphomas.


Assuntos
Antineoplásicos/farmacologia , Resistencia a Medicamentos Antineoplásicos , Linfoma/etiologia , Vírus Oncogênicos , Infecções Tumorais por Vírus/complicações , Infecções Tumorais por Vírus/virologia , Animais , Antineoplásicos/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Linhagem Celular Tumoral , Infecções por Vírus Epstein-Barr/complicações , Infecções por Vírus Epstein-Barr/virologia , Herpesvirus Humano 4/genética , Humanos , Linfoma/tratamento farmacológico , Linfoma/metabolismo , Vírus Oncogênicos/genética
15.
J Med Chem ; 60(15): 6587-6597, 2017 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-28605593

RESUMO

Secondary DNA structures are uniquely poised as therapeutic targets due to their molecular switch function in turning gene expression on or off and scaffold-like properties for protein and small molecule interaction. Strategies to alter gene transcription through these structures thus far involve targeting single DNA conformations. Here we investigate the feasibility of simultaneously targeting different secondary DNA structures to modulate two key oncogenes, cellular-myelocytomatosis (MYC) and B-cell lymphoma gene-2 (BCL2), in diffuse large B-cell lymphoma (DLBCL). Cotreatment with previously identified ellipticine and pregnanol derivatives that recognize the MYC G-quadruplex and BCL2 i-motif promoter DNA structures lowered mRNA levels and subsequently enhanced sensitivity to a standard chemotherapy drug, cyclophosphamide, in DLBCL cell lines. In vivo repression of MYC and BCL2 in combination with cyclophosphamide also significantly slowed tumor growth in DLBCL xenograft mice. Our findings demonstrate concurrent targeting of different DNA secondary structures offers an effective, precise, medicine-based approach to directly impede transcription and overcome aberrant pathways in aggressive malignancies.


Assuntos
Antineoplásicos/uso terapêutico , Quadruplex G , Linfoma Difuso de Grandes Células B/tratamento farmacológico , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-myc/genética , Animais , Apoptose/efeitos dos fármacos , Benzoxazinas/uso terapêutico , Caspase 3/metabolismo , Linhagem Celular , Ciclofosfamida/uso terapêutico , Sistemas de Liberação de Medicamentos , Elipticinas/uso terapêutico , Técnicas de Silenciamento de Genes , Humanos , Linfoma Difuso de Grandes Células B/patologia , Camundongos , Pregnanos/uso terapêutico , RNA Mensageiro/metabolismo , Carga Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto
19.
Hum Pathol ; 45(10): 2144-53, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25090918

RESUMO

Patients with aggressive, BCL2 protein-positive (+) diffuse large B-cell lymphoma (DLBCL) often experience rapid disease progression that is refractory to standard therapy. However, there is potential for false-negative staining of BCL2 using the standard monoclonal mouse 124 antibody that hinders the identification of these high-risk DLBCL patients. Herein, we compare 2 alternative rabbit monoclonal antibodies (E17 and SP66) to the 124 clone in staining for BCL2 in formalin-fixed, paraffin-embedded DLBCL tissues. Overall, in 2 independent DLBCL cohorts, E17 and SP66 detected BCL2 expression more frequently than 124. In the context of MYC expression, cases identified as BCL2 (+) with SP66 demonstrated the strongest correlation with worse overall survival. The 124 clone failed to detect BCL2 expression in the majority of translocation (+), amplification (+), and activated B-cell DLBCL cases in which high levels of BCL2 protein are expected. Using dual in situ hybridization as a new tool to detect BCL2 translocation and amplification, we observed similar results as previously reported for fluorescence in situ hybridization for translocation but a higher amplification frequency, indicating that BCL2 amplification may be underreported in DLBCL. Among the discrepant cases, phosphorylation of BCL2 at T69 and/or S70 was more common than in the concordant cases and may contribute to the 124 false negatives, in addition to previously associated mutations within the epitope region. The accurate detection of BCL2 expression is important in the prognosis and treatment of DLBCL particularly with new anti-BCL2 therapies.


Assuntos
Anticorpos Monoclonais , Biomarcadores Tumorais/análise , Amplificação de Genes , Linfoma Difuso de Grandes Células B/genética , Linfoma Difuso de Grandes Células B/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/análise , Animais , Epitopos de Linfócito B/análise , Humanos , Imuno-Histoquímica , Hibridização In Situ/métodos , Coelhos , Análise Serial de Tecidos
20.
J Am Chem Soc ; 136(11): 4161-71, 2014 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-24559410

RESUMO

It is generally accepted that DNA predominantly exists in duplex form in cells. However, under torsional stress imposed by active transcription, DNA can assume nonduplex structures. The BCL2 promoter region forms two different secondary DNA structures on opposite strands called the G-quadruplex and the i-motif. The i-motif is a highly dynamic structure that exists in equilibrium with a flexible hairpin species. Here we identify a pregnanol derivative and a class of piperidine derivatives that differentially modulate gene expression by stabilizing either the i-motif or the flexible hairpin species. Stabilization of the i-motif structure results in significant upregulation of the BCL2 gene and associated protein expression; in contrast, stabilization of the flexible hairpin species lowers BCL2 levels. The BCL2 levels reduced by the hairpin-binding compound led to chemosensitization to etoposide in both in vitro and in vivo models. Furthermore, we show antagonism between the two classes of compounds in solution and in cells. For the first time, our results demonstrate the principle of small molecule targeting of i-motif structures in vitro and in vivo to modulate gene expression.


Assuntos
DNA/efeitos dos fármacos , Piperidinas/farmacologia , Pregnanodiol/farmacologia , Regiões Promotoras Genéticas/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Termodinâmica , Animais , DNA/química , DNA/genética , Perfilação da Expressão Gênica , Humanos , Células MCF-7 , Camundongos , Camundongos SCID , Conformação de Ácido Nucleico/efeitos dos fármacos , Piperidinas/química , Pregnanodiol/análogos & derivados , Pregnanodiol/química , Proteínas Proto-Oncogênicas c-bcl-2/química , Proteínas Proto-Oncogênicas c-bcl-2/genética , RNA Mensageiro/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Relação Estrutura-Atividade , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...