Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 11(1): 19585, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34599257

RESUMO

A series of poly(phenylene-vinylene)-based copolymers are synthesized using the Gilch method incorporating monomers with sterically bulky sidechains. The photochemical upconversion performance of these polymers as emitters are investigated using a palladium tetraphenyltetrabenzoporphyrin triplet sensitizer and MEH-PPV as reference. Increased incorporation of sterically bulky monomers leads to a reduction in the upconversion efficiency despite improved photoluminescence quantum yield. A phosphorescence quenching study indicates issues with the energy transfer process between the triplet sensitizer and the copolymers. The best performance with 0.18% upconversion quantum yield is obtained for the copolymer containing 10% monomer with bulky sidechains.

2.
Angew Chem Int Ed Engl ; 59(38): 16455-16458, 2020 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-32558120

RESUMO

A nanoring-rotaxane supramolecular assembly with a Cy7 cyanine dye (hexamethylindotricarbocyanine) threaded along the axis of the nanoring was synthesized as a model for the energy transfer between the light-harvesting complex LH1 and the reaction center in purple bacteria photosynthesis. The complex displays efficient energy transfer from the central cyanine dye to the surrounding zinc porphyrin nanoring. We present a theoretical model that reproduces the absorption spectrum of the nanoring and quantifies the excitonic coupling between the nanoring and the central dye, thereby explaining the efficient energy transfer and demonstrating similarity with structurally related natural light-harvesting systems.


Assuntos
Carbocianinas/metabolismo , Corantes/metabolismo , Complexos de Proteínas Captadores de Luz/metabolismo , Nanopartículas/metabolismo , Porfirinas/metabolismo , Rotaxanos/metabolismo , Carbocianinas/química , Corantes/química , Complexos de Proteínas Captadores de Luz/química , Modelos Moleculares , Nanopartículas/química , Porfirinas/química , Rotaxanos/química
3.
Chem Sci ; 11(8): 2112-2120, 2020 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-34123299

RESUMO

Break down of the Born-Oppenheimer approximation is caused by mixing of electronic and vibrational transitions in the radical cations of some conjugated polymers, resulting in unusually intense vibrational bands known as infrared active vibrations (IRAVs). Here, we investigate the mechanism of this amplification, and show that it provides insights into intramolecular charge migration. Spectroelectrochemical time-resolved infrared (TRIR) and two-dimensional infrared (2D-IR) spectroscopies were used to investigate the radical cations of two butadiyne-linked conjugated porphyrin oligomers, a linear dimer and a cyclic hexamer. The 2D-IR spectra reveal strong coupling between all the IRAVs and the electronic π-π* polaron band. Intramolecular vibrational energy redistribution (IVR) and vibrational relaxation occur within ∼0.1-7 ps. TRIR spectra show that the transient ground state bleach (GSB) and excited state absorption (ESA) signals have anisotropies of 0.31 ± 0.07 and 0.08 ± 0.04 for the linear dimer and cyclic hexamer cations, respectively. The small TRIR anisotropy for the cyclic hexamer radical cation indicates that the vibrationally excited polaron migrates round the nanoring on a time scale faster than the measurement, i.e. within 0.5 ps, at 298 K. Density functional theory (DFT) calculations qualitatively reproduce the emergence of the IRAVs. The first singlet (S1) excited states of the neutral porphyrin oligomers exhibit similar IRAVs to the radical cations, implying that the excitons have similar electronic structures to polarons. Our results show that IRAVs originate from the strong coupling of charge redistribution to nuclear motion, and from the similar energies of electronic and vibrational transitions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...