Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 10(1): 5590, 2019 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-31811127

RESUMO

Whereas the rigid nature of standard thermoelectrics limits their use, flexible thermoelectric platforms can find much broader applications, for example, in low-power, wearable energy harvesting for internet-of-things applications. Here we realize continuous, flexible thermoelectric threads via a rapid extrusion of 3D-printable composite inks (Bi2Te3 n- or p-type micrograins within a non-conducting polymer as a binder) followed by compression through a roller-pair, and we demonstrate their applications in flexible, low-power energy harvesting. The thermoelectric power factors of these threads are enhanced up to 7 orders-of-magnitude after lateral compression, principally due to improved conductivity resulting from reduced void volume fraction and partial alignment of thermoelectric micrograins. This dependence is quantified using a conductivity/Seebeck vise for pressure-controlled studies. The resulting grain-to-grain conductivity is well explained with a modified percolation theory to model a pressure-dependent conductivity. Flexible thermoelectric modules are demonstrated to utilize thermal gradients either parallel or transverse to the thread direction.

2.
Sci Rep ; 7(1): 16358, 2017 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-29180780

RESUMO

We present combined in situ X-ray diffraction and high-speed imaging to monitor the phase evolution upon cyclic rapid laser heating and cooling mimicking the direct energy deposition of Ti-6Al-4V in real time. Additive manufacturing of the industrially relevant alloy Ti-6Al-4V is known to create a multitude of phases and microstructures depending on processing technology and parameters. Current setups are limited by an averaged measurement through the solid and liquid parts. In this work the combination of a micro-focused intense X-ray beam, a fast detector and unidirectional cooling provide the spatial and temporal resolution to separate contributions from solid and liquid phases in limited volumes. Upon rapid heating and cooling, the ß â†” α' phase transformation is observed repeatedly. At room temperature, single phase α' is observed. Secondary ß-formation upon formation of α' is attributed to V partitioning to the ß-phase leading to temporary stabilization. Lattice strains in the α'-phase are found to be sensitive to the α' → ß phase transformation. Based on lattice strain of the ß-phase, the martensite start temperature is estimated at 923 K in these experiments. Off-axis high speed imaging confirms a technically relevant solidification front velocity and cooling rate of 10.3 mm/s and 4500 K/s, respectively.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...