Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Med Genet ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38960580

RESUMO

BACKGROUND: SINE-VNTR-Alu (SVA) retrotransposons move from one genomic location to another in a 'copy-and-paste' manner. They continue to move actively and cause monogenic diseases through various mechanisms. Currently, disease-causing SVA retrotransposons are classified into human-specific young SVA_E or SVA_F subfamilies. In this study, we identified an evolutionarily old SVA_D retrotransposon as a novel cause of occipital horn syndrome (OHS). OHS is an X-linked, copper metabolism disorder caused by dysfunction of the copper transporter, ATP7A. METHODS: We investigated a 16-year-old boy with OHS whose pathogenic variant could not be detected via routine molecular genetic analyses. RESULTS: A 2.8 kb insertion was detected deep within the intron of the patient's ATP7A gene. This insertion caused aberrant mRNA splicing activated by a new donor splice site located within it. Long-read circular consensus sequencing enabled us to accurately read the entire insertion sequence, which contained highly repetitive and GC-rich segments. Consequently, the insertion was identified as an SVA_D retrotransposon. Antisense oligonucleotides (AOs) targeting the new splice site restored the expression of normal transcripts and functional ATP7A proteins. AO treatment alleviated excessive accumulation of copper in patient fibroblasts in a dose-dependent manner. Pedigree analysis revealed that the retrotransposon had moved into the OHS-causing position two generations ago. CONCLUSION: This is the first report of a human monogenic disease caused by the SVA_D retrotransposon. The fact that the evolutionarily old SVA_D is still actively transposed, leading to increased copy numbers may make a notable impact on rare genetic disease research.

2.
Biology (Basel) ; 13(2)2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38392337

RESUMO

Terminal repeat retrotransposons in miniature (TRIMs) are short non-autonomous long terminal repeat (LTR) retrotransposons found from various eukaryotes. Cassandra is a unique TRIM lineage which contains a 5S rRNA-derived sequence in its LTRs. Here, two new groups of TRIMs, designated Helenus and Ajax, are reported based on bioinformatics analysis and the usage of Repbase. Helenus is found from fungi, animals, and plants, and its LTRs contain a tRNA-like sequence. It includes two LTRs and between them, a primer-binding site (PBS) and polypurine tract (PPT) exist. Fungal and plant Helenus generate 5 bp target site duplications (TSDs) upon integration, while animal Helenus generates 4 bp TSDs. Ajax includes a 5S rRNA-derived sequence in its LTR and is found from two nemertean genomes. Ajax generates 5 bp TSDs upon integration. These results suggest that despite their unique promoters, Helenus and Ajax are TRIMs whose transposition is dependent on autonomous LTR retrotransposon. These TRIMs can originate through an insertion of SINE in an LTR of TRIM. The discovery of Helenus and Ajax suggests the presence of TRIMs with a promoter for RNA polymerase III derived from a small RNA gene, which is here collectively termed TRIMp3.

3.
Genes Cells ; 28(10): 746-752, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37650155

RESUMO

Long terminal repeat (LTR) retrotransposons are the major contributor to genome size expansion, as in the cases of the maize genome or the axolotl genome. Despite their impact on the genome size, the length of each retrotransposon is limited, compared to DNA transposons, which sometimes exceed over 100 kb. The longest LTR retrotransposon known to date is Burro-1 from the planarian Schmidtea medierranea, which is around 35.7 kb long. Here through bioinformatics analysis, a new lineage of gigantic LTR retrotransposons, designated Daidara, is reported from the springtail Allacma fusca genome. Their entire length (25-33 kb) rivals Burro families, while their LTRs are shorter than 1.5 kb, in contrast to other gigantic LTR retrotransposon lineages Burro and Ogre, whose LTRs are around 5 kb long. Daidara encodes three core proteins corresponding to gag, pol, and an additional protein of unknown function. The phylogenetic analysis supports the independent gigantification of Daidara from Burro or Ogre.

4.
DNA Res ; 30(4)2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37148195

RESUMO

The restriction enzymes examined so far are phosphodiesterases, which cleave DNA strands by hydrolysing phosphodiester bonds. Based on the mobility of restriction-modification systems, recent studies have identified a family of restriction enzymes that excise a base in their recognition sequence to generate an abasic (AP) site unless the base is properly methylated. These restriction glycosylases also show intrinsic but uncoupled AP lyase activity at the AP site, generating an atypical strand break. Action of an AP endonuclease at the AP site may generate another atypical break, rejoining/repairing of which is difficult. This PabI family of restriction enzymes contain a novel fold (HALFPIPE) and show unusual properties, such as non-requirement of divalent cations for cleavage. These enzymes are present in Helicobacteraceae/Campylobacteraceae and in few hyperthermophilic archaeal species. In Helicobacter genomes, their recognition sites are strongly avoided, and the encoding genes are often inactivated by mutations or replacement, indicating that their expression is toxic for the cells. The discovery of restriction glycosylases generalizes the concept of restriction-modification systems to epigenetic immune systems, which may use any mode of damage to DNA that are considered 'non-self' based on epigenetic modifications. This concept will add to our understanding of immunity and epigenetics.


Assuntos
Reparo do DNA , DNA , DNA/metabolismo , Enzimas de Restrição-Modificação do DNA/genética , Enzimas de Restrição-Modificação do DNA/metabolismo
5.
Biology (Basel) ; 12(3)2023 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-36979057

RESUMO

DDD/E transposase gene is the most abundant gene in nature and many DNA transposons in all three domains of life use it for their transposition. A substantial number of eukaryotic DNA transposons show similarity to prokaryotic insertion sequences (ISs). The presence of IS481-like DNA transposons was indicated in the genome of Trichomonas vaginalis. Here, we surveyed IS481-like eukaryotic sequences using a bioinformatics approach and report a group of eukaryotic IS481-like DNA transposons, designated IS481EU, from parabasalids including T. vaginalis. The lengths of target site duplications (TSDs) of IS481EU are around 4 bps, around 15 bps, or around 25 bps, and strikingly, these discrete lengths of TSDs can be observed even in a single IS481EU family. Phylogenetic analysis indicated the close relationships of IS481EU with some of the prokaryotic IS481 family members. IS481EU was not well separated from IS3EU/GingerRoot in the phylogenetic analysis, but was distinct from other eukaryotic DNA transposons including Ginger1 and Ginger2. The unique characteristics of IS481EU in protein sequences and the distribution of TSD lengths support its placement as a new superfamily of eukaryotic DNA transposons.

6.
Mob DNA ; 13(1): 24, 2022 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-36273192

RESUMO

BACKGROUND: DNA transposons are ubiquitous components of eukaryotic genomes. A major group of them encode a DDD/E transposase and contain terminal inverted repeats (TIRs) of varying lengths. The Kolobok superfamily of DNA transposons has been found in a wide spectrum of organisms. RESULTS: Here we report a new Kolobok lineage, designated KolobokP. They were identified in 7 animal phyla (Mollusca, Phoronida, Annelida, Nemertea, Bryozoa, Chordata, and Echinodermata), and are especially rich in bivalves. Unlike other Kolobok families, KolobokP adopts a composite-like architecture: an internal region (INT) flanked by two long terminal direct repeats (LTDRs), which exhibit their own short terminal inverted repeats ranging up to 18 bps. The excision of LTDRs was strongly suggested. The LTDR lengths seem to be constrained to be either around 450-bp or around 660-bp. The internal region encodes a DDD/E transposase and a small His-Me finger nuclease, which likely originated from the homing endonuclease encoded by a group I intron from a eukaryotic species. The architecture of KolobokP resembles composite DNA transposons, usually observed in bacterial genomes, and long terminal repeat (LTR) retrotransposons. In addition to this monomeric LTDR-INT-LTDR structure, plenty of solo LTDRs and multimers represented as (LTDR-INT)n-LTDR are also observed. Our structural and phylogenetic analysis supported the birth of KolobokP in the late stage of the Kolobok evolution. We propose KolobokP families propagate themselves in two ways: the canonical transposition catalyzed by their transposase and the sequence-specific cleavage by their endonuclease followed by the multimerization through the unequal crossover. CONCLUSIONS: The presence of homing endonuclease and long terminal direct repeats of KolobokP families suggest their unique dual replication mechanisms: transposition and induced unequal crossover.

7.
Biology (Basel) ; 11(2)2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-35205033

RESUMO

Dada is a unique superfamily of DNA transposons, inserted specifically in multicopy RNA genes. The zebrafish genome harbors five families of Dada transposons, whose targets are U6 and U1 snRNA genes, and tRNA-Ala and tRNA-Leu genes. Dada-U6, which is inserted specifically in U6 snRNA genes, is found in four animal phyla, but other target-specific lineages have been reported only from one or two species. Here, vertebrate genomes and transcriptomes were surveyed to characterize Dada families with new target specificities, and over 120 Dada families were characterized from the genomes of actinopterygian fish. They were classified into 12 groups with confirmed target specificities. Newly characterized Dada families target tRNA genes for Asp, Asn, Arg, Gly, Lys, Ser, Tyr, and Val, and 5S rRNA genes. Targeted positions inside of tRNA genes are concentrated in two regions: around the anticodon and the A box of RNA polymerase III promoter. Phylogenetic analysis revealed the relationships among actinopterygian Dada families, and one domestication event in the common ancestor of carps and minnows belonging to Cyprinoidei, Cypriniformes. Sequences targeted by phylogenetically related Dada families show sequence similarities, indicating that the target specificity of Dada is accomplished through the recognition of primary nucleotide sequences.

8.
Mob DNA ; 11: 18, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32489435

RESUMO

BACKGROUND: Short interspersed elements (SINEs) are ubiquitous components of eukaryotic genomes. SINEs are composite transposable elements that are mobilized by non-long terminal repeat (non-LTR) retrotransposons, also called long interspersed elements (LINEs). The 3' part of SINEs usually originated from that of counterpart non-LTR retrotransposons. The 5' part of SINEs mostly originated from small RNA genes. SINE1 is a group of SINEs whose 5' part originated from 7SL RNA, and is represented by primate Alu and murine B1. Well-defined SINE1 has been found only from Euarchontoglires, a group of mammals, in contrast to the wide distribution of SINE2, which has a tRNA-derived sequence, from animals to plants to protists. Both Alu and B1 are mobilized by L1-type non-LTR retrotransposons, which are the only lineage of autonomous non-LTR retrotransposons active in these mammalian lineages. RESULTS: Here a new lineage of SINE1 is characterized from the seashore hagfish Eptatretus burgeri genome. This SINE1 family, designated SINE1-1_EBu, is young, and is transposed by RTE-type non-LTR retrotransposon, not L1-type. Comparison with other SINE families from hagfish indicated the birth of SINE1-1_EBu through chimera formation of a 7SL RNA-derived sequence and an older tRNA-derived SINE family. It reveals parallel evolution of SINE1 in two vertebrate lineages with different autonomous non-LTR retrotransposon partners. The comparison between two SINE1 lineages supports that the RNA secondary structure of the Alu domain of 7SL RNA is required for the efficient retrotransposition. CONCLUSIONS: The hagfish SINE1 is the first evident SINE1 family found outside of Euarchontoglires. Independent evolution of SINE1 with similar RNA secondary structure originated in 7SL RNA indicates the functional importance of 7SL RNA-derived sequence in the proliferation of SINEs.

9.
Genes (Basel) ; 11(5)2020 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-32397417

RESUMO

Bioinformatic and molecular characterization of satellite repeats was performed to understand the impact of their diversification on Vaccinium genome evolution. Satellite repeat diversity was evaluated in four cultivated and wild species, including the diploid species Vaccinium myrtillus and Vaccinium uliginosum, as well as the tetraploid species Vaccinium corymbosum and Vaccinium arctostaphylos. We comparatively characterized six satellite repeat families using in total 76 clones with 180 monomers. We observed that the monomer units of VaccSat1, VaccSat2, VaccSat5, and VaccSat6 showed a higher order repeat (HOR) structure, likely originating from the organization of two adjacent subunits with differing similarity, length and size. Moreover, VaccSat1, VaccSat3, VaccSat6, and VaccSat7 were found to have sequence similarity to parts of transposable elements. We detected satellite-typical tandem organization for VaccSat1 and VaccSat2 in long arrays, while VaccSat5 and VaccSat6 distributed in multiple sites over all chromosomes of tetraploid V. corymbosum, presumably in long arrays. In contrast, very short arrays of VaccSat3 and VaccSat7 are dispersedly distributed over all chromosomes in the same species, likely as internal parts of transposable elements. We provide a comprehensive overview on satellite species specificity in Vaccinium, which are potentially useful as molecular markers to address the taxonomic complexity of the genus, and provide information for genome studies of this genus.


Assuntos
DNA Satélite/genética , Vaccinium/genética , Cromossomos de Plantas/genética , Biologia Computacional , Elementos de DNA Transponíveis , Genoma de Planta , Genótipo , Filogenia , Ploidias , Alinhamento de Sequência , Especificidade da Espécie
10.
Mob DNA ; 11: 15, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32328173

RESUMO

BACKGROUND: DNA transposons are ubiquitous components of eukaryotic genomes. Academ superfamily of DNA transposons is one of the least characterized DNA transposon superfamilies in eukaryotes. DNA transposons belonging to the Academ superfamily have been reported from various animals, one red algal species Chondrus crispus, and one fungal species Puccinia graminis. Six Academ families from P. graminis encode a helicase in addition to putative transposase, while some other families encode a single protein which contains a putative transposase and an XPG nuclease. RESULTS: Systematic searches on Repbase and BLAST searches against publicly available genome sequences revealed that several species of fungi and animals contain multiple Academ transposon families encoding a helicase. These AcademH families generate 9 or 10-bp target site duplications (TSDs) while Academ families lacking helicase generate 3 or 4-bp TSDs. Phylogenetic analysis clearly shows two lineages inside of Academ, designated here as AcademH and AcademX for encoding helicase or XPG nuclease, respectively. One sublineage of AcademH in animals encodes plant homeodomain (PHD) finger in its transposase, and its remnants are found in several fish genomes. CONCLUSIONS: The AcademH lineage of TEs is widely distributed in animals and fungi, and originated early in the evolution of Academ DNA transposons. This analysis highlights the structural diversity in one less studied superfamily of eukaryotic DNA transposons.

11.
Genes Genet Syst ; 94(6): 233-252, 2020 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-30416149

RESUMO

The majority of eukaryotic genomes contain a large fraction of repetitive sequences that primarily originate from transpositional bursts of transposable elements (TEs). Repbase serves as a database for eukaryotic repetitive sequences and has now become the largest collection of eukaryotic TEs. During the development of Repbase, many new superfamilies/lineages of TEs, which include Helitron, Polinton, Ginger and SINEU, were reported. The unique composition of protein domains and DNA motifs in TEs sometimes indicates novel mechanisms of transposition, replication, anti-suppression or proliferation. In this review, our current understanding regarding the diversity of eukaryotic TEs in sequence, protein domain composition and structural hallmarks is introduced and summarized, based on the classification system implemented in Repbase. Autonomous eukaryotic TEs can be divided into two groups: Class I TEs, also called retrotransposons, and Class II TEs, or DNA transposons. Long terminal repeat (LTR) retrotransposons, including endogenous retroviruses, non-LTR retrotransposons, tyrosine recombinase retrotransposons and Penelope-like elements, are well accepted groups of autonomous retrotransposons. They share reverse transcriptase for replication but are distinct in the catalytic components responsible for integration into the host genome. Similarly, at least three transposition machineries have been reported in eukaryotic DNA transposons: DDD/E transposase, tyrosine recombinase and HUH endonuclease combined with helicase. Among these, TEs with DDD/E transposase are dominant and are classified into 21 superfamilies in Repbase. Non-autonomous TEs are either simple derivatives generated by internal deletion, or are composed of several units that originated independently.


Assuntos
Elementos de DNA Transponíveis , Retroelementos , Biologia Computacional , Eucariotos/genética , Variação Genética , Domínios Proteicos
12.
Genome Biol Evol ; 10(1): 370-379, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29325122

RESUMO

Short interspersed elements (SINEs), which are nonautonomous transposable elements, require the transposition machinery of long interspersed elements (LINEs) to mobilize. SINEs are composed of two or more independently originating parts. The 5' region is called the "head" and is derived mainly from small RNAs, and the 3' region ("tail") originates from the 3' region of LINEs and is responsible for being recognized by counterpart LINE proteins. The origin of the middle "body" of SINEs is enigmatic, although significant sequence similarities among SINEs from very diverse species have been observed. Here, a systematic analysis of the similarities among SINEs and LINEs deposited on Repbase, a comprehensive database of eukaryotic repeat sequences was performed. Three primary findings are described: 1) The 5' regions of only two clades of LINEs, RTE and Vingi, were revealed to have contributed to the middle parts of SINEs; 2) The linkage of the 5' and 3' parts of LINEs can be lost due to occasional tail exchange of SINEs; and 3) The previously proposed Ceph-domain was revealed to be a fusion of a CORE-domain and a 5' part of RTE clade of LINE. Based on these findings, a hypothesis that the 5' parts of bipartite nonautonomous LINEs, which possess only the 5' and 3' regions of the original LINEs, can contribute to the undefined middle part of SINEs is proposed.


Assuntos
Evolução Molecular , Elementos Nucleotídeos Longos e Dispersos , Elementos Nucleotídeos Curtos e Dispersos , Animais , Sequência de Bases , Alinhamento de Sequência
13.
Mob DNA ; 9: 2, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29308093

RESUMO

Repbase is a comprehensive database of eukaryotic transposable elements (TEs) and repeat sequences, containing over 1300 human repeat sequences. Recent analyses of these repeat sequences have accumulated evidences for their contribution to human evolution through becoming functional elements, such as protein-coding regions or binding sites of transcriptional regulators. However, resolving the origins of repeat sequences is a challenge, due to their age, divergence, and degradation. Ancient repeats have been continuously classified as TEs by finding similar TEs from other organisms. Here, the most comprehensive picture of human repeat sequences is presented. The human genome contains traces of 10 clades (L1, CR1, L2, Crack, RTE, RTEX, R4, Vingi, Tx1 and Penelope) of non-long terminal repeat (non-LTR) retrotransposons (long interspersed elements, LINEs), 3 types (SINE1/7SL, SINE2/tRNA, and SINE3/5S) of short interspersed elements (SINEs), 1 composite retrotransposon (SVA) family, 5 classes (ERV1, ERV2, ERV3, Gypsy and DIRS) of LTR retrotransposons, and 12 superfamilies (Crypton, Ginger1, Harbinger, hAT, Helitron, Kolobok, Mariner, Merlin, MuDR, P, piggyBac and Transib) of DNA transposons. These TE footprints demonstrate an evolutionary continuum of the human genome.

14.
PLoS One ; 12(11): e0187288, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29117225

RESUMO

A bacterial insertion sequence (IS) is a mobile DNA sequence carrying only the transposase gene (tnp) that acts as a mutator to disrupt genes, alter gene expressions, and cause genomic rearrangements. "Canonical" ISs have historically been characterized by their terminal inverted repeats (IRs), which may form a stem-loop structure, and duplications of a short (non-IR) target sequence at both ends, called target site duplications (TSDs). The IS distributions and virulence potentials of Staphylococcus aureus genomes in familial infection cases are unclear. Here, we determined the complete circular genome sequences of familial strains from a Panton-Valentine leukocidin (PVL)-positive ST50/agr4 S. aureus (GN) infection of a 4-year old boy with skin abscesses. The genomes of the patient strain (GN1) and parent strain (GN3) were rich for "canonical" IS1272 with terminal IRs, both having 13 commonly-existing copies (ce-IS1272). Moreover, GN1 had a newly-inserted IS1272 (ni-IS1272) on the PVL-converting prophage, while GN3 had two copies of ni-IS1272 within the DNA helicase gene and near rot. The GN3 genome also had a small deletion. The targets of ni-IS1272 transposition were IR structures, in contrast with previous "canonical" ISs. There were no TSDs. Based on a database search, the targets for ce-IS1272 were IRs or "non-IRs". IS1272 included a larger structure with tandem duplications of the left (IRL) side sequence; tnp included minor cases of a long fusion form and truncated form. One ce-IS1272 was associated with the segments responsible for immune evasion and drug resistance. Regarding virulence, GN1 expressed cytolytic peptides (phenol-soluble modulin α and δ-hemolysin) and PVL more strongly than some other familial strains. These results suggest that IS1272 transposes through an IR-replacing mechanism, with an irreversible process unlike that of "canonical" transpositions, resulting in genomic variations, and that, among the familial strains, the patient strain has strong virulence potential based on community-associated virulence factors.


Assuntos
Elementos de DNA Transponíveis/genética , Genômica , Sequências Repetidas Invertidas/genética , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/genética , Staphylococcus aureus/isolamento & purificação , Toxinas Bacterianas/química , Toxinas Bacterianas/genética , Sequência de Bases , Pré-Escolar , Mapeamento Cromossômico , Análise por Conglomerados , DNA Circular/genética , Exotoxinas/química , Exotoxinas/genética , Família , Feminino , Duplicação Gênica , Regulação Bacteriana da Expressão Gênica , Genes Bacterianos , Genoma Bacteriano , Humanos , Leucocidinas/química , Leucocidinas/genética , Masculino , Mutagênese Insercional/genética , Reação em Cadeia da Polimerase , Prófagos/fisiologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Análise de Sequência de DNA , Infecções Estafilocócicas/transmissão , Staphylococcus aureus/patogenicidade , Fatores de Virulência/biossíntese , Fatores de Virulência/genética
15.
PLoS One ; 11(9): e0163496, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27662593

RESUMO

Transposons, or transposable elements, are the major components of genomes in most eukaryotes. Some groups of transposons have developed target specificity that limits the integration sites to a specific nonessential sequence or a genomic region to avoid gene disruption caused by insertion into an essential gene. R2 is one of the most intensively investigated groups of sequence-specific non-LTR retrotransposons and is inserted at a specific site inside of 28S ribosomal RNA (rRNA) genes. R2 is known to be distributed among at least six animal phyla even though its occurrence is reported to be patchy. Here, in order to obtain a more detailed picture of the distribution of R2, we surveyed R2 using both in silico screening and degenerate PCR, particularly focusing on actinopterygian fish. We found two families of the R2C lineage from vertebrates, although it has previously only been found in platyhelminthes. We also revealed the apparent movement of insertion sites of a lineage of actinopterygian R2, which was likely concurrent with the acquisition of a 28S rRNA-derived sequence in their 3' UTR. Outside of actinopterygian fish, we revealed the maintenance of a single R2 lineage in birds; the co-existence of four lineages of R2 in the leafcutter bee Megachile rotundata; the first examples of R2 in Ctenophora, Mollusca, and Hemichordata; and two families of R2 showing no target specificity. These findings indicate that R2 is relatively stable and universal, while differences in the distribution and maintenance of R2 lineages probably reflect characteristics of some combination of both R2 lineages and host organisms.

16.
Mol Biol Evol ; 33(11): 2848-2859, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27604221

RESUMO

Decoding of closely related genomes is now revealing the process of population evolution. In bacteria, population divergence appears associated with a unique set of sequence-specific epigenetic DNA methylation systems, often within restriction-modification (RM) systems. They might define a unique gene expression pattern and limit genetic flux between lineages in population divergence. We addressed the contribution of methylation systems to population diversification in panmictic bacterial species, Helicobacter pylori, which shows an interconnected population structure through frequent mutual recombination. We analyzed complete genome sequences of 28 strains collected in Fukui, Japan. Their nucleotide sequences are closely related although fine-scale analyses revealed two subgroups likely reflecting human subpopulations. Their sequences are tightly connected by homologous recombination. Our extensive analysis of RM systems revealed an extreme variability in DNA methyltransferases, especially in their target recognition domains. Their diversity was, however, not immediately related to the genome sequence diversity, except for very closely related strains. An interesting exception is a hybrid strain, which likely has conserved the methylation gene repertoire from one parent but diversified in sequence by massive acquisition of fragmentary DNA sequences from the other parent. Our results demonstrate how a bacterial population can be extremely divergent in epigenetics and yet homogenized in sequence.


Assuntos
Metilação de DNA , Helicobacter pylori/genética , Sequência de Bases , Evolução Biológica , Metilases de Modificação do DNA , Enzimas de Restrição-Modificação do DNA , DNA Bacteriano/genética , Evolução Molecular , Variação Genética , Genoma Bacteriano , Homologia de Sequência do Ácido Nucleico
17.
PLoS One ; 11(8): e0159419, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27504980

RESUMO

Genomes of a given bacterial species can show great variation in gene content and thus systematic analysis of the entire gene repertoire, termed the pan-genome, is important for understanding bacterial intra-species diversity, population genetics, and evolution. Here, we analyzed the pan-genome from 30 completely sequenced strains of the human gastric pathogen Helicobacter pylori belonging to various phylogeographic groups, focusing on 991 accessory (not fully conserved) orthologous groups (OGs). We developed a method to evaluate the mobility of genes within a genome, using the gene order in the syntenically conserved regions as a reference, and classified the 991 accessory OGs into five classes: Core, Stable, Intermediate, Mobile, and Unique. Phylogenetic networks based on the gene content of Core and Stable classes are highly congruent with that created from the concatenated alignment of fully conserved core genes, in contrast to those of Intermediate and Mobile classes, which show quite different topologies. By clustering the accessory OGs on the basis of phylogenetic pattern similarity and chromosomal proximity, we identified 60 co-occurring gene clusters (CGCs). In addition to known genomic islands, including cag pathogenicity island, bacteriophages, and integrating conjugative elements, we identified some novel ones. One island encodes TerY-phosphorylation triad, which includes the eukaryote-type protein kinase/phosphatase gene pair, and components of type VII secretion system. Another one contains a reverse-transcriptase homolog, which may be involved in the defense against phage infection through altruistic suicide. Many of the CGCs contained restriction-modification (RM) genes. Different RM systems sometimes occupied the same (orthologous) locus in the strains. We anticipate that our method will facilitate pan-genome studies in general and help identify novel genomic islands in various bacterial species.


Assuntos
Ilhas Genômicas/genética , Genômica/métodos , Helicobacter pylori/genética , Cromossomos Bacterianos/genética , Elementos de DNA Transponíveis/genética , DNA Bacteriano/genética , Família Multigênica/genética , Filogenia , DNA Polimerase Dirigida por RNA/genética
18.
ISME J ; 10(5): 1134-46, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26613339

RESUMO

Genes encoding reverse transcriptases (RTs) are found in most eukaryotes, often as a component of retrotransposons, as well as in retroviruses and in prokaryotic retroelements. We investigated the abundance, classification and transcriptional status of RTs based on Tara Oceans marine metagenomes and metatranscriptomes encompassing a wide organism size range. Our analyses revealed that RTs predominate large-size fraction metagenomes (>5 µm), where they reached a maximum of 13.5% of the total gene abundance. Metagenomic RTs were widely distributed across the phylogeny of known RTs, but many belonged to previously uncharacterized clades. Metatranscriptomic RTs showed distinct abundance patterns across samples compared with metagenomic RTs. The relative abundances of viral and bacterial RTs among identified RT sequences were higher in metatranscriptomes than in metagenomes and these sequences were detected in all metatranscriptome size fractions. Overall, these observations suggest an active proliferation of various RT-assisted elements, which could be involved in genome evolution or adaptive processes of plankton assemblage.


Assuntos
Metagenoma , Plâncton/enzimologia , Plâncton/genética , DNA Polimerase Dirigida por RNA/genética , Água do Mar/microbiologia , Eucariotos/enzimologia , Eucariotos/genética , Eucariotos/isolamento & purificação , Filogenia , Plâncton/metabolismo , Células Procarióticas/enzimologia , Células Procarióticas/metabolismo , DNA Polimerase Dirigida por RNA/metabolismo , Retroelementos , Água do Mar/virologia , Transcrição Gênica
19.
PLoS One ; 10(11): e0140084, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26556480

RESUMO

Most non-long terminal repeat (non-LTR) retrotransposons encoding a restriction-like endonuclease show target-specific integration into repetitive sequences such as ribosomal RNA genes and microsatellites. However, only a few target-specific lineages of non-LTR retrotransposons are distributed widely and no lineage is found across the eukaryotic kingdoms. Here we report the most widely distributed lineage of target sequence-specific non-LTR retrotransposons, designated Utopia. Utopia is found in three supergroups of eukaryotes: Amoebozoa, SAR, and Opisthokonta. Utopia is inserted into a specific site of U2 small nuclear RNA genes with different strength of specificity for each family. Utopia families from oomycetes and wasps show strong target specificity while only a small number of Utopia copies from reptiles are flanked with U2 snRNA genes. Oomycete Utopia families contain an "archaeal" RNase H domain upstream of reverse transcriptase (RT), which likely originated from a plant RNase H gene. Analysis of Utopia from oomycetes indicates that multiple lineages of Utopia have been maintained inside of U2 genes with few copy numbers. Phylogenetic analysis of RT suggests the monophyly of Utopia, and it likely dates back to the early evolution of eukaryotes.


Assuntos
Evolução Biológica , Eucariotos/genética , RNA Nuclear Pequeno/genética , Retroelementos/genética , Animais , Sequência de Bases , Dosagem de Genes , Dados de Sequência Molecular , Oomicetos/genética , Filogenia , Alinhamento de Sequência , Homologia de Sequência do Ácido Nucleico , Especificidade da Espécie
20.
BMC Genomics ; 16: 817, 2015 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-26481899

RESUMO

BACKGROUND: R.PabI is an exceptional restriction enzyme that functions as a DNA glycosylase. The enzyme excises an unmethylated base from its recognition sequence to generate apurinic/apyrimidinic (AP) sites, and also displays AP lyase activity, cleaving the DNA backbone at the AP site to generate the 3'-phospho alpha, beta-unsaturated aldehyde end in addition to the 5'-phosphate end. The resulting ends are difficult to religate with DNA ligase. The enzyme was originally isolated in Pyrococcus, a hyperthermophilic archaeon, and additional homologs subsequently identified in the epsilon class of the Gram-negative bacterial phylum Proteobacteria, such as Helicobacter pylori. RESULTS: Systematic analysis of R.PabI homologs and their neighboring genes in sequenced genomes revealed co-occurrence of R.PabI with M.PabI homolog methyltransferase genes. R.PabI and M.PabI homolog genes are occasionally found at corresponding (orthologous) loci in different species, such as Helicobacter pylori, Helicobacter acinonychis and Helicobacter cetorum, indicating long-term maintenance of the gene pair. One R.PabI and M.PabI homolog gene pair is observed immediately after the GMP synthase gene in both Campylobacter and Helicobacter, representing orthologs beyond genera. The mobility of the PabI family of restriction-modification (RM) system between genomes is evident upon comparison of genomes of sibling strains/species. Analysis of R.PabI and M.PabI homologs in H. pylori revealed an insertion of integrative and conjugative elements (ICE), and replacement with a gene of unknown function that may specify a membrane-associated toxin (hrgC). In view of the similarity of HrgC with toxins in type I toxin-antitoxin systems, we addressed the biological significance of this substitution. Our data indicate that replacement with hrgC occurred in the common ancestor of hspAmerind and hspEAsia. Subsequently, H. pylori with and without hrgC were intermixed at this locus, leading to complex distribution of hrgC in East Asia and the Americas. In Malaysia, hrgC was horizontally transferred from hspEAsia to hpAsia2 strains. CONCLUSIONS: The PabI family of RM system behaves as a mobile, selfish genetic element, similar to the other families of Type II RM systems. Our analysis additionally revealed some cases of long-term inheritance. The distribution of the hrgC gene replacing the PabI family in the subpopulations of H. pylori, hspAmerind, hspEAsia and hpAsia2, corresponds to the two human migration events, one from East Asia to Americas and the other from China to Malaysia.


Assuntos
DNA Glicosilases/genética , Enzimas de Restrição do DNA/genética , Evolução Molecular , Helicobacter pylori/genética , Sequência de Aminoácidos , Sequência de Bases , Campylobacter/enzimologia , Campylobacter/genética , DNA Glicosilases/isolamento & purificação , Enzimas de Restrição do DNA/isolamento & purificação , Helicobacter pylori/enzimologia , Humanos , Filogenia , Pyrococcus abyssi/enzimologia , Pyrococcus abyssi/genética , Homologia de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...