Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem A ; 124(27): 5580-5589, 2020 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-32551660

RESUMO

We performed UV spectroscopy for p-coumaric acid (pCA), ferulic acid (FA), and caffeic acid (CafA) under jet-cooled gas-phase conditions by using a laser-ablation source. These molecules showed the S1(1ππ*)-S0 absorption in the 31 500-33 500 cm-1 region. Both pCA and FA exhibited sharp vibronic bands, while CafA showed only a broad feature. The decay time profile of the 1ππ* state was measured by picosecond pump-probe spectroscopy, and the transient state produced through the nonradiative decay (NRD) from 1ππ* and its time profile were measured by nanosecond UV-deep UV pump-probe spectroscopy. The transient state was observed for pCA and FA and assigned to the T1 state, and we concluded that the NRD process of 1ππ* is S1(1ππ*) → 1nπ* → T1(3ππ*), similar to those of methyl cinnamate and para-substituted cinnamates such as p-hydroxy and p-methoxy methyl cinnamate. On the other hand, the transient T1 state was not detected in CafA, and its NRD route is suggested to be S1(1ππ*) → 1πσ* → H atom elimination, similar to those of phenol and catechol. The effect of a hydrogen bond on the electronic state and NRD process was investigated, and it was found that the H-bonding lowers the 1ππ* energy and suppresses the NRD process for all the species.

2.
Chemphyschem ; 20(8): 996-1000, 2019 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-30865359

RESUMO

The S1 electronic state of 7,7,8,8-Tetracyanoquinodimethane (TCNQ) has been investigated by laser induced fluorescence (LIF), dispersed fluorescence (DF) spectroscopy, and lifetime measurements under jet-cooled conditions in the gas-phase. The LIF spectrum showed a weak origin band at 412.13 nm (24262 cm-1 ) with prominent progression and combination bands involving vibrations of 327, 1098, and 2430 cm-1 . In addition, very strong bands appeared at ∼363.6 nm (3300 cm-1 above the origin). Both the LIF and DF spectra indicate considerable geometric change in the S1 state. The fluorescence lifetime of S1 at zero-point level was obtained to be 220 ns. This lifetime is 40 times longer than the radiative lifetime estimated from the S1 -S0 oscillator strength. Furthermore, the lifetimes of the vibronic bands exhibited drastic energy dependence, indicating a strong mixing with the triplet (T1 ) or intramolecular charge-transfer (CT) state. This study is thought to disclose intrinsic nature of TCNQ, which has been well known as a component of organic semiconductors and a versatile p-type dopant.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...