Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38260630

RESUMO

Diverse eukaryotic cells assemble microtubule networks that vary in structure and composition. While we understand how cells build microtubule networks with specialized functions, we do not know how microtubule networks diversify across deep evolutionary timescales. This problem has remained unresolved because most organisms use shared pools of tubulins for multiple networks, making it impossible to trace the evolution of any single network. In contrast, the amoeboflagellate Naegleria uses distinct tubulin genes to build distinct microtubule networks: while Naegleria builds flagella from conserved tubulins during differentiation, it uses divergent tubulins to build its mitotic spindle. This genetic separation makes for an internally controlled system to study independent microtubule networks in a single organismal and genomic context. To explore the evolution of these microtubule networks, we identified conserved microtubule binding proteins and used transcriptional profiling of mitosis and differentiation to determine which are upregulated during the assembly of each network. Surprisingly, most microtubule binding proteins are upregulated during only one process, suggesting that Naegleria uses distinct component pools to specialize its microtubule networks. Furthermore, the divergent residues of mitotic tubulins tend to fall within the binding sites of differentiation-specific microtubule regulators, suggesting that interactions between microtubules and their binding proteins constrain tubulin sequence diversification. We therefore propose a model for cytoskeletal evolution in which pools of microtubule network components constrain and guide the diversification of the entire network, so that the evolution of tubulin is inextricably linked to that of its binding partners.

2.
Curr Biol ; 33(16): 3325-3337.e5, 2023 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-37478864

RESUMO

Controlling intracellular osmolarity is essential to all cellular life. Cells that live in hypo-osmotic environments, such as freshwater, must constantly battle water influx to avoid swelling until they burst. Many eukaryotic cells use contractile vacuoles to collect excess water from the cytosol and pump it out of the cell. Although contractile vacuoles are essential to many species, including important pathogens, the mechanisms that control their dynamics remain unclear. To identify the basic principles governing contractile vacuole function, we investigate here the molecular mechanisms of two species with distinct vacuolar morphologies from different eukaryotic lineages: the discoban Naegleria gruberi and the amoebozoan slime mold Dictyostelium discoideum. Using quantitative cell biology, we find that although these species respond differently to osmotic challenges, they both use vacuolar-type proton pumps for filling contractile vacuoles and actin for osmoregulation, but not to power water expulsion. We also use analytical modeling to show that cytoplasmic pressure is sufficient to drive water out of contractile vacuoles in these species, similar to findings from the alveolate Paramecium multimicronucleatum. These analyses show that cytoplasmic pressure is sufficient to drive contractile vacuole emptying for a wide range of cellular pressures and vacuolar geometries. Because vacuolar-type proton-pump-dependent contractile vacuole filling and pressure-dependent emptying have now been validated in three eukaryotic lineages that diverged well over a billion years ago, we propose that this represents an ancient eukaryotic mechanism of osmoregulation.


Assuntos
Dictyostelium , Citosol/metabolismo , Concentração Osmolar , Equilíbrio Hidroeletrolítico , Vacúolos/metabolismo , Eucariotos , Água/metabolismo
3.
Curr Biol ; 33(13): 2616-2631.e5, 2023 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-37290442

RESUMO

The skin epithelium acts as the barrier between an organism's internal and external environments. In zebrafish and other freshwater organisms, this barrier function requires withstanding a large osmotic gradient across the epidermis. Wounds breach this epithelium, causing a large disruption to the tissue microenvironment due to the mixing of isotonic interstitial fluid with the external hypotonic fresh water. Here, we show that, following acute injury, the larval zebrafish epidermis undergoes a dramatic fissuring process that resembles hydraulic fracturing, driven by the influx of external fluid. After the wound has sealed-preventing efflux of this external fluid-fissuring starts in the basal epidermal layer at the location nearest to the wound and then propagates at a constant rate through the tissue, spanning over 100 µm. During this process, the outermost superficial epidermal layer remains intact. Fissuring is completely inhibited when larvae are wounded in isotonic external media, suggesting that osmotic gradients are required for fissure formation. Additionally, fissuring partially depends on myosin II activity, as myosin II inhibition reduces the distance of fissure propagation away from the wound. During and after fissuring, the basal layer forms large macropinosomes (with cross-sectional areas ranging from 1 to 10 µm2). We conclude that excess external fluid entry through the wound and subsequent closure of the wound through actomyosin purse-string contraction in the superficial cell layer causes fluid pressure buildup in the extracellular space of the zebrafish epidermis. This excess fluid pressure causes tissue to fissure, and eventually the fluid is cleared through macropinocytosis.


Assuntos
Fraturamento Hidráulico , Peixe-Zebra , Animais , Cicatrização/fisiologia , Epiderme , Células Epidérmicas , Miosina Tipo II
4.
bioRxiv ; 2023 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-36909496

RESUMO

Controlling intracellular osmolarity is essential to all cellular life. Cells that live in hypo-osmotic environments like freshwater must constantly battle water influx to avoid swelling until they burst. Many eukaryotic cells use contractile vacuoles to collect excess water from the cytosol and pump it out of the cell. Although contractile vacuoles are essential to many species, including important pathogens, the mechanisms that control their dynamics remain unclear. To identify basic principles governing contractile vacuole function, we here investigate the molecular mechanisms of two species with distinct vacuolar morphologies from different eukaryotic lineagesâ€"the discoban Naegleria gruberi , and the amoebozoan slime mold Dictyostelium discoideum . Using quantitative cell biology we find that, although these species respond differently to osmotic challenges, they both use actin for osmoregulation, as well as vacuolar-type proton pumps for filling contractile vacuoles. We also use analytical modeling to show that cytoplasmic pressure is sufficient to drive water out of contractile vacuoles in these species, similar to findings from the alveolate Paramecium multimicronucleatum . Because these three lineages diverged well over a billion years ago, we propose that this represents an ancient eukaryotic mechanism of osmoregulation.

5.
Curr Biol ; 32(6): 1247-1261.e6, 2022 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-35139359

RESUMO

Naegleria gruberi is a unicellular eukaryote whose evolutionary distance from animals and fungi has made it useful for developing hypotheses about the last common eukaryotic ancestor. Naegleria amoebae lack a cytoplasmic microtubule cytoskeleton and assemble microtubules only during mitosis and thus represent a unique system for studying the evolution and functional specificity of mitotic tubulins and the spindles they assemble. Previous studies show that Naegleria amoebae express a divergent α-tubulin during mitosis, and we now show that Naegleria amoebae express a second mitotic α- and two mitotic ß-tubulins. The mitotic tubulins are evolutionarily divergent relative to typical α- and ß-tubulins and contain residues that suggest distinct microtubule properties. These distinct residues are conserved in mitotic tubulin homologs of the "brain-eating amoeba" Naegleria fowleri, making them potential drug targets. Using quantitative light microscopy, we find that Naegleria's mitotic spindle is a distinctive barrel-like structure built from a ring of microtubule bundles. Similar to those of other species, Naegleria's spindle is twisted, and its length increases during mitosis, suggesting that these aspects of mitosis are ancestral features. Because bundle numbers change during metaphase, we hypothesize that the initial bundles represent kinetochore fibers and secondary bundles function as bridging fibers.


Assuntos
Microtúbulos , Naegleria , Fuso Acromático , Tubulina (Proteína) , Eucariotos , Microtúbulos/química , Microtúbulos/genética , Microtúbulos/fisiologia , Mitose , Naegleria/citologia , Naegleria/genética , Fuso Acromático/química , Fuso Acromático/genética , Tubulina (Proteína)/genética
6.
Biophys J ; 121(6): 1029-1037, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35167863

RESUMO

Adhesion between animal cells and the underlying extracellular matrix is challenged during wounding, cell division, and a variety of pathological processes. How cells recover adhesion in the immediate aftermath of detachment from the extracellular matrix remains incompletely understood, due in part to technical limitations. Here, we used acute chemical and mechanical perturbations to examine how epithelial cells respond to partial delamination events. In both cases, we found that cells extended lamellipodia to establish readhesion within seconds of detachment. These lamellipodia were guided by sparse membrane tethers whose tips remained attached to their original points of adhesion, yielding lamellipodia that appear to be qualitatively distinct from those observed during cell migration. In vivo measurements in the context of a zebrafish wound assay showed a similar behavior, in which membrane tethers guided rapidly extending lamellipodia. In the case of mechanical wounding events, cells selectively extended tether-guided lamellipodia in the direction opposite of the pulling force, resulting in the rapid reestablishment of contact with the substrate. We suggest that membrane tether-guided lamellipodial respreading may represent a general mechanism to reestablish tissue integrity in the face of acute disruption.


Assuntos
Pseudópodes , Peixe-Zebra , Animais , Movimento Celular , Células Epiteliais , Cicatrização
7.
Biophys J ; 120(9): 1578-1591, 2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-33631203

RESUMO

During actin-based cell migration, the actin cytoskeleton in the lamellipodium both generates and responds to force, which has functional consequences for the ability of the cell to extend protrusions. However, the material properties of the lamellipodial actin network and its response to stress on the timescale of motility are incompletely understood. Here, we describe a dynamic wrinkling phenotype in the lamellipodium of fish keratocytes, in which the actin sheet buckles upward away from the ventral membrane of the cell, forming a periodic pattern of wrinkles perpendicular to the cell's leading edge. Cells maintain an approximately constant wrinkle wavelength over time despite new wrinkle formation and the lateral movement of wrinkles in the cell frame of reference, suggesting that cells have a preferred or characteristic wrinkle wavelength. Generation of wrinkles is dependent upon myosin contractility, and their wavelength scales directly with the density of the actin network and inversely with cell adhesion. These results are consistent with a simple physical model for wrinkling in an elastic sheet under compression and suggest that the lamellipodial cytoskeleton behaves as an elastic material on the timescale of cell migration despite rapid actin turnover.


Assuntos
Miosinas , Pseudópodes , Actinas , Animais , Movimento Celular , Citoesqueleto
8.
Bio Protoc ; 11(24): e4260, 2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-35087919

RESUMO

Wound healing is a critical process for maintaining the integrity of tissues, driven in large part by the active migration of cells to cover damaged regions. While the long-term tissue injury response over hours and days has been extensively studied, the rapid early migratory response of cells to injury in vivo is still being uncovered, especially in model systems such as zebrafish larvae, which are ideal for live imaging with high spatiotemporal resolution. Observing these dynamics requires a wounding method that prompts a robust wound response and is compatible with immediate live imaging or other downstream applications. We have developed a procedure for wounding the epidermis in the tailfin of larval zebrafish, which we term "tissue laceration". In this procedure, the tailfin is impaled with a glass needle that is then dragged through the tissue, which generates a full-thickness wound that elicits a dramatic migratory wound response within seconds from cells up to several hundred micrometers away from the wound. Laceration generates a larger wound response in the first few minutes following wounding compared to other mechanical wounds such as tail transection, and laceration does not require specialized equipment compared to laser wounding methods. This procedure can be used to interrogate the processes by which epidermal cells far away from the wound are able to rapidly detect injury and respond to the wound.

9.
Elife ; 92020 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-33225997

RESUMO

The ability of epithelial tissues to heal after injury is essential for animal life, yet the mechanisms by which epithelial cells sense tissue damage are incompletely understood. In aquatic organisms such as zebrafish, osmotic shock following injury is believed to be an early and potent activator of a wound response. We find that, in addition to sensing osmolarity, basal skin cells in zebrafish larvae are also sensitive to changes in the particular ionic composition of their surroundings after wounding, specifically the concentration of sodium chloride in the immediate vicinity of the wound. This sodium chloride-specific wound detection mechanism is independent of cell swelling, and instead is suggestive of a mechanism by which cells sense changes in the transepithelial electrical potential generated by the transport of sodium and chloride ions across the skin. Consistent with this hypothesis, we show that electric fields directly applied within the skin are sufficient to initiate actin polarization and migration of basal cells in their native epithelial context in vivo, even overriding endogenous wound signaling. This suggests that, in order to mount a robust wound response, skin cells respond to both osmotic and electrical perturbations arising from tissue injury.


Assuntos
Fenômenos Eletrofisiológicos/fisiologia , Epiderme/lesões , Concentração Osmolar , Cloreto de Sódio/farmacologia , Animais , Animais Geneticamente Modificados , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Larva , Plasmídeos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Cloreto de Sódio/química , Peixe-Zebra
10.
Phys Rev E ; 95(3-1): 032411, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28415269

RESUMO

A recent burst of dynamic single-cell data makes it possible to characterize the stochastic dynamics of cell division control in bacteria. Different models were used to propose specific mechanisms, but the links between them are poorly explored. The lack of comparative studies makes it difficult to appreciate how well any particular mechanism is supported by the data. Here, we describe a simple and generic framework in which two common formalisms can be used interchangeably: (i) a continuous-time division process described by a hazard function and (ii) a discrete-time equation describing cell size across generations (where the unit of time is a cell cycle). In our framework, this second process is a discrete-time Langevin equation with simple physical analogues. By perturbative expansion around the mean initial size (or interdivision time), we show how this framework describes a wide range of division control mechanisms, including combinations of time and size control, as well as the constant added size mechanism recently found to capture several aspects of the cell division behavior of different bacteria. As we show by analytical estimates and numerical simulations, the available data are described precisely by the first-order approximation of this expansion, i.e., by a "linear response" regime for the correction of size fluctuations. Hence, a single dimensionless parameter defines the strength and action of the division control against cell-to-cell variability (quantified by a single "noise" parameter). However, the same strength of linear response may emerge from several mechanisms, which are distinguished only by higher-order terms in the perturbative expansion. Our analytical estimate of the sample size needed to distinguish between second-order effects shows that this value is close to but larger than the values of the current datasets. These results provide a unified framework for future studies and clarify the relevant parameters at play in the control of cell division.


Assuntos
Divisão Celular , Modelos Biológicos , Fenômenos Fisiológicos Bacterianos , Simulação por Computador , Fatores de Tempo
11.
Phys Rev E ; 93(1): 012408, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26871102

RESUMO

The mean size of exponentially dividing Escherichia coli cells in different nutrient conditions is known to depend on the mean growth rate only. However, the joint fluctuations relating cell size, doubling time, and individual growth rate are only starting to be characterized. Recent studies in bacteria reported a universal trend where the spread in both size and doubling times is a linear function of the population means of these variables. Here we combine experiments and theory and use scaling concepts to elucidate the constraints posed by the second observation on the division control mechanism and on the joint fluctuations of sizes and doubling times. We found that scaling relations based on the means collapse both size and doubling-time distributions across different conditions and explain how the shape of their joint fluctuations deviates from the means. Our data on these joint fluctuations highlight the importance of cell individuality: Single cells do not follow the dependence observed for the means between size and either growth rate or inverse doubling time. Our calculations show that these results emerge from a broad class of division control mechanisms requiring a certain scaling form of the "division hazard rate function," which defines the probability rate of dividing as a function of measurable parameters. This "model free" approach gives a rationale for the universal body-size distributions observed in microbial ecosystems across many microbial species, presumably dividing with multiple mechanisms. Additionally, our experiments show a crossover between fast and slow growth in the relation between individual-cell growth rate and division time, which can be understood in terms of different regimes of genome replication control.


Assuntos
Divisão Celular , Crescimento Celular , Escherichia coli/citologia , Escherichia coli/fisiologia , Modelos Biológicos , Tamanho Celular , Microscopia de Fluorescência , Tempo
12.
Biophys J ; 110(2): 338-347, 2016 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-26789757

RESUMO

The motion of chromosomal DNA is essential to many biological processes, including segregation, transcriptional regulation, recombination, and packaging. Physical understanding of these processes would be dramatically enhanced through predictive, quantitative modeling of chromosome dynamics of multiple loci. Using a polymer dynamics framework, we develop a prediction for the correlation in the velocities of two loci on a single chromosome or otherwise connected by chromatin. These predictions reveal that the signature of correlated motion between two loci can be identified by varying the lag time between locus position measurements. In general, this theory predicts that as the lag time interval increases, the dual-loci dynamic behavior transitions from being completely uncorrelated to behaving as an effective single locus. This transition corresponds to the timescale of the stress communication between loci through the intervening segment. This relatively simple framework makes quantitative predictions based on a single timescale fit parameter that can be directly compared to the in vivo motion of fluorescently labeled chromosome loci. Furthermore, this theoretical framework enables the detection of dynamically coupled chromosome regions from the signature of their correlated motion.


Assuntos
Cromossomos/química , DNA/química , Loci Gênicos , Simulação de Dinâmica Molecular , Cromossomos/genética , Movimento (Física)
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...