Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Life (Basel) ; 12(6)2022 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-35743852

RESUMO

The regolith environment and associated organic material on Ceres is analogous to environments that existed on Earth 3-4 billion years ago. This has implications not only for abiogenesis and the theory of transpermia, but it provides context for developing a framework to contrast the limits of Earth's biosphere with extraterrestrial environments of interest. In this study, substrate utilisation by the ice-associated bacterium Colwellia hornerae was examined with respect to three aliphatic organic hydrocarbons that may be present on Ceres: dodecane, isobutyronitrile, and dioctyl-sulphide. Following inoculation into a phyllosilicate regolith spiked with a hydrocarbon (1% or 20% organic concentration wt%), cell density, electron transport activity, oxygen consumption, and the production of ATP, NADPH, and protein in C. hornerae was monitored for a period of 32 days. Microbial growth kinetics were correlated with changes in bioavailable carbon, nitrogen, and sulphur. We provide compelling evidence that C. hornerae can survive and grow by utilising isobutyronitrile and, in particular, dodecane. Cellular growth, electron transport activity, and oxygen consumption increased significantly in dodecane at 20 wt% compared to only minor growth at 1 wt%. Importantly, the reduction in total carbon, nitrogen, and sulphur observed at 20 wt% is attributed to biotic, rather than abiotic, processes. This study illustrates that short-term bacterial incubation studies using exotic substrates provide a useful indicator of habitability. We suggest that replicating the regolith environment of Ceres warrants further study and that this dwarf planet could be a valid target for future exploratory missions.

3.
Front Plant Sci ; 11: 588005, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33324435

RESUMO

Sea ice supports a unique assemblage of microorganisms that underpin Antarctic coastal food-webs, but reduced ice thickness coupled with increased snow cover will modify energy flow and could lead to photodamage in ice-associated microalgae. In this study, microsensors were used to examine the influence of rapid shifts in irradiance on extracellular oxidative free radicals produced by sea-ice algae. Bottom-ice algal communities were exposed to one of three levels of incident light for 10 days: low (0.5 µmol photons m-2 s-1, 30 cm snow cover), mid-range (5 µmol photons m-2 s-1, 10 cm snow), or high light (13 µmol photons m-2 s-1, no snow). After 10 days, the snow cover was reversed (either removed or added), resulting in a rapid change in irradiance at the ice-water interface. In treatments acclimated to low light, the subsequent exposure to high irradiance resulted in a ~400× increase in the production of hydrogen peroxide (H2O2) and a 10× increase in nitric oxide (NO) concentration after 24 h. The observed increase in oxidative free radicals also resulted in significant changes in photosynthetic electron flow, RNA-oxidative damage, and community structural dynamics. In contrast, there was no significant response in sea-ice algae acclimated to high light and then exposed to a significantly lower irradiance at either 24 or 72 h. Our results demonstrate that microsensors can be used to track real-time in-situ stress in sea-ice microbial communities. Extrapolating to ecologically relevant spatiotemporal scales remains a significant challenge, but this approach offers a fundamentally enhanced level of resolution for quantifying the microbial response to global change.

4.
Sci Rep ; 10(1): 21848, 2020 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-33318636

RESUMO

Ice-associated microalgae make a significant seasonal contribution to primary production and biogeochemical cycling in polar regions. However, the distribution of algal cells is driven by strong physicochemical gradients which lead to a degree of microspatial variability in the microbial biomass that is significant, but difficult to quantify. We address this methodological gap by employing a field-deployable hyperspectral scanning and photogrammetric approach to study sea-ice cores. The optical set-up facilitated unsupervised mapping of the vertical and horizontal distribution of phototrophic biomass in sea-ice cores at mm-scale resolution (using chlorophyll a [Chl a] as proxy), and enabled the development of novel spectral indices to be tested against extracted Chl a (R2 ≤ 0.84). The modelled bio-optical relationships were applied to hyperspectral imagery captured both in situ (using an under-ice sliding platform) and ex situ (on the extracted cores) to quantitatively map Chl a in mg m-2 at high-resolution (≤ 2.4 mm). The optical quantification of Chl a on a per-pixel basis represents a step-change in characterising microspatial variation in the distribution of ice-associated algae. This study highlights the need to increase the resolution at which we monitor under-ice biophysical systems, and the emerging capability of hyperspectral imaging technologies to deliver on this research goal.

6.
J Phycol ; 56(5): 1323-1338, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32464687

RESUMO

Sea ice algae contribute up to 25% of the primary productivity of polar seas and seed large-scale ice-edge blooms. Fluctuations in temperature, salinity, and light associated with the freeze/thaw cycle can significantly impact the photophysiology of ice-associated taxa. The effects of multiple co-stressors (i.e., freezing temperature and high brine salinity or sudden high light exposure) on the photophysiology of ice algae were investigated in a series of ice tank experiments with the polar diatom Fragilariopsis cylindrus under different light intensities. When algal cells were frozen into the ice, the maximum quantum yield of photosystem II photochemistry (PSII; Fv /Fm ) decreased possibly due to the damage of PSII reaction centers and/or high brine salinity stress suppressing the reduction capacity downstream of PSII. Expression of the rbcL gene was highly up-regulated, suggesting that cells initiated strategies to enhance survival upon freezing in. Algae contained within the ice-matrix displayed similar levels of Fv /Fm regardless of the light treatments. Upon melting out, cells were exposed to high light (800 µmol photons · m-2  · s-1 ), resulting in a rapid decline in Fv /Fm and significant up-regulation of non-photochemical quenching (NPQ). These results suggest that ice algae employed safety valves (i.e., NPQ) to maintain their photosynthetic capability during the sudden environmental changes. Our results infer that sea ice algae are highly adaptable when exposed to multiple co-stressors and that their success can, in part, be explained by the ability to rapidly modify their photosynthetic competence - a key factor contributing to algal bloom formation in the polar seas.


Assuntos
Diatomáceas , Clorofila , Congelamento , Camada de Gelo , Luz , Oceanos e Mares , Fotossíntese , Complexo de Proteína do Fotossistema II
7.
J Phycol ; 56(5): 1196-1207, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32428973

RESUMO

Nitric oxide (NO) is widely recognized as an important transmitter molecule in biological systems, from animals to plants and microbes. However, the role of NO in marine photosynthetic microbes remains unclear and even less is known about the role of this metabolite in Antarctic sea-ice diatoms. Using a combination of microsensors, microfluidic chambers, and artificial sea-ice tanks, a basic mechanistic insight into NO's dynamics within the Antarctic sea-ice diatom Fragilariopsis cylindrus was obtained. Results suggest that NO production in F. cylindrus is nitrite-dependent via nitrate reductase. NO production was abolished upon exposure to light but could be induced in the light when normal photosynthetic electron flow was disrupted. The addition of exogenous NO to cellular suspensions of F. cylindrus negatively influenced growth, disrupted photosynthesis, and altered non-photochemical dissipation mechanisms. NO production was also observed when cells were exposed to stressful salinity and temperature regimes. These results suggest that during periods of environmental stress, NO could be produced in F. cylindrus as a "stress signa" molecule.


Assuntos
Diatomáceas , Regiões Antárticas , Camada de Gelo , Óxido Nítrico , Fotossíntese
8.
New Phytol ; 223(2): 675-691, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30985935

RESUMO

Light underneath Antarctic sea-ice is below detectable limits for up to 4 months of the year. The ability of Antarctic sea-ice diatoms to survive this prolonged darkness relies on their metabolic capability. This study is the first to examine the proteome of a prominent sea-ice diatom in response to extended darkness, focusing on the protein-level mechanisms of dark survival. The Antarctic diatom Fragilariopsis cylindrus was grown under continuous light or darkness for 120 d. The whole cell proteome was quantitatively analysed by nano-LC-MS/MS to investigate metabolic changes that occur during sustained darkness and during recovery under illumination. Enzymes of metabolic pathways, particularly those involved in respiratory processes, tricarboxylic acid cycle, glycolysis, the Entner-Doudoroff pathway, the urea cycle and the mitochondrial electron transport chain became more abundant in the dark. Within the plastid, carbon fixation halted while the upper sections of the glycolysis, gluconeogenesis and pentose phosphate pathways became less active. We have discovered how F. cylindrus utilises an ancient alternative metabolic mechanism that enables its capacity for long-term dark survival. By sustaining essential metabolic processes in the dark, F. cylindrus retains the functionality of the photosynthetic apparatus, ensuring rapid recovery upon re-illumination.


Assuntos
Escuridão , Diatomáceas/fisiologia , Camada de Gelo , Regiões Antárticas , Contagem de Células , Respiração Celular , Clorofila/metabolismo , Diatomáceas/crescimento & desenvolvimento , Diatomáceas/efeitos da radiação , Transporte de Elétrons , Luz , Redes e Vias Metabólicas , Fotossíntese/efeitos da radiação , Proteínas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...