Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 231
Filtrar
1.
Environ Microbiol Rep ; 16(3): e13280, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38922748

RESUMO

Microbial necromass is increasingly recognized as an important fast-cycling component of the long-term carbon present in soils. To better understand how fungi and bacteria individually contribute to the decomposition of fungal necromass, three particle sizes (>500, 250-500, and <250 µm) of Hyaloscypha bicolor necromass were incubated in laboratory microcosms inoculated with individual strains of two fungi and two bacteria. Decomposition was assessed after 15 and 28 days via necromass loss, microbial respiration, and changes in necromass pH, water content, and chemistry. To examine how fungal-bacterial interactions impact microbial growth on necromass, single and paired cultures of bacteria and fungi were grown in microplates containing necromass-infused media. Microbial growth was measured after 5 days through quantitative PCR. Regardless of particle size, necromass colonized by fungi had higher mass loss and respiration than both bacteria and uninoculated controls. Fungal colonization increased necromass pH, water content, and altered chemistry, while necromass colonized by bacteria remained mostly unaltered. Bacteria grew significantly more when co-cultured with a fungus, while fungal growth was not significantly affected by bacteria. Collectively, our results suggest that fungi act as key early decomposers of fungal necromass and that bacteria may require the presence of fungi to actively participate in necromass decomposition.


Assuntos
Bactérias , Tamanho da Partícula , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Bactérias/crescimento & desenvolvimento , Bactérias/metabolismo , Fungos/crescimento & desenvolvimento , Fungos/classificação , Fungos/genética , Fungos/fisiologia , Microbiologia do Solo , Concentração de Íons de Hidrogênio , Ascomicetos/crescimento & desenvolvimento , Ascomicetos/fisiologia
2.
Ecol Lett ; 27(6): e14460, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38877759

RESUMO

Mast seeding is a well-documented phenomenon across diverse forest ecosystems. While its effect on aboveground food webs has been thoroughly studied, how it impacts the soil fungi that drive soil carbon and nutrient cycling has not yet been explored. To evaluate the relationship between mast seeding and fungal resource availability, we paired a Swiss 29-year fungal sporocarp census with contemporaneous seed production for European beech (Fagus sylvatica L.). On average, mast seeding was associated with a 55% reduction in sporocarp production and a compositional community shift towards drought-tolerant taxa across both ectomycorrhizal and saprotrophic guilds. Among ectomycorrhizal fungi, traits associated with carbon cost did not explain species' sensitivity to seed production. Together, our results support a novel hypothesis that mast seeding limits annual resource availability and reproductive investment in soil fungi, creating an ecosystem 'rhythm' to forest processes that is synchronized above- and belowground.


Assuntos
Fagus , Micorrizas , Fagus/microbiologia , Micorrizas/fisiologia , Biodiversidade , Microbiologia do Solo , Sementes/microbiologia , Suíça , Fungos/fisiologia , Micobioma
3.
Mycology ; 15(2): 255-271, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38813472

RESUMO

High-throughput sequencing has become a prominent tool to assess plant-associated microbial diversity. Still, some technical challenges remain in characterising these communities, notably due to plant and fungal DNA co-amplification. Fungal-specific primers, Peptide Nucleic Acid (PNA) clamps, or adjusting PCR conditions are approaches to limit plant DNA contamination. However, a systematic comparison of these factors and their interactions, which could limit plant DNA contamination in the study of plant mycobiota, is still lacking. Here, three primers targeting the ITS2 region were evaluated alone or in combination with PNA clamps both on nettle (Urtica dioica) root DNA and a mock community. PNA clamps did not improve the richness or diversity of the fungal communities but increased the number of fungal reads. Among the tested factors, the most significant was the primer pair. Specifically, the 5.8S-Fun/ITS4-Fun pair exhibited a higher OTU richness but fewer fungal reads. Our study demonstrates that the choice of primers is critical for limiting plant and fungal DNA co-amplification. PNA clamps increase the number of fungal reads when ITS2 is targeted but do not result in higher fungal diversity recovery at high sequencing depth. At lower read depths, PNA clamps might enhance microbial diversity quantification for primer pairs lacking fungal specificity.

4.
Commun Biol ; 7(1): 354, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38570722

RESUMO

The invasive hornet Vespa velutina nigrithorax is a rapidly proliferating threat to pollinators in Europe and East Asia. To effectively limit its spread, colonies must be detected and destroyed early in the invasion curve, however the current reliance upon visual alerts by the public yields low accuracy. Advances in deep learning offer a potential solution to this, but the application of such technology remains challenging. Here we present VespAI, an automated system for the rapid detection of V. velutina. We leverage a hardware-assisted AI approach, combining a standardised monitoring station with deep YOLOv5s architecture and a ResNet backbone, trained on a bespoke end-to-end pipeline. This enables the system to detect hornets in real-time-achieving a mean precision-recall score of ≥0.99-and send associated image alerts via a compact remote processor. We demonstrate the successful operation of a prototype system in the field, and confirm its suitability for large-scale deployment in future use cases. As such, VespAI has the potential to transform the way that invasive hornets are managed, providing a robust early warning system to prevent ingressions into new regions.


Assuntos
Aprendizado Profundo , Vespas , Animais , Espécies Introduzidas , Europa (Continente) , Ásia Oriental
5.
New Phytol ; 242(4): 1448-1475, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38581203

RESUMO

Research on mycorrhizal symbiosis has been slowed by a lack of established study systems. To address this challenge, we have been developing Suillus, a widespread ecologically and economically relevant fungal genus primarily associated with the plant family Pinaceae, into a model system for studying ectomycorrhizal (ECM) associations. Over the last decade, we have compiled extensive genomic resources, culture libraries, a phenotype database, and protocols for manipulating Suillus fungi with and without their tree partners. Our efforts have already resulted in a large number of publicly available genomes, transcriptomes, and respective annotations, as well as advances in our understanding of mycorrhizal partner specificity and host communication, fungal and plant nutrition, environmental adaptation, soil nutrient cycling, interspecific competition, and biological invasions. Here, we highlight the most significant recent findings enabled by Suillus, present a suite of protocols for working with the genus, and discuss how Suillus is emerging as an important model to elucidate the ecology and evolution of ECM interactions.


Assuntos
Evolução Biológica , Modelos Biológicos , Micorrizas , Micorrizas/fisiologia , Micorrizas/genética , Ecologia , Simbiose/genética , Basidiomycota/fisiologia , Basidiomycota/genética
7.
J Neurol ; 271(1): 116-124, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37945762

RESUMO

Intrathecal immunoglobulin G (IgG) and oligoclonal bands (OCBs) detected in both the brain and cerebrospinal fluid (CSF) are seminal features of multiple sclerosis (MS). The presence of OCBs correlates with elevated disease burden and severity and supports the diagnosis of MS. Despite numerous investigations into the potential viral and autoantigen targets, the precise antigenic specificity of OCBs has remained elusive. We have little knowledge of the nature regarding these oligoclonal IgG bands. Here, we present compelling evidence highlighting the key findings that both OCBs and intrathecal IgG antibodies are under genetic control and that OCBs originate from clonal B-cells in both the periphery and CNS. We propose that MS OCBs are IgG immune complexes composed of IgG1 and IgG3 antibodies and that the pathological role of OCB stems from the IgG effector functions of these complexes, leading to demyelination and axonal injuries. We present additional evidence regarding the nature of MS OCBs: (1) disease-modifying therapies have been shown to affect CSF OCB; (2) OCBs have also been detected in several neuroinfectious diseases; (3) Epstein-Barr virus (EBV) has been particularly linked with MS pathogenesis, and its association with OCB is an important area of study. Although OCBs are closely associated with MS, more meticulously planned research is necessary to clarify the precise role of OCB in MS, both in terms of disease pathogenesis and diagnosis.


Assuntos
Infecções por Vírus Epstein-Barr , Esclerose Múltipla , Humanos , Bandas Oligoclonais/líquido cefalorraquidiano , Herpesvirus Humano 4 , Imunoglobulina G/líquido cefalorraquidiano
8.
New Phytol ; 2023 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-38073143

RESUMO

Rising atmospheric carbon dioxide concentrations (CO2 ) and atmospheric nitrogen (N) deposition have contrasting effects on ectomycorrhizal (EM) and arbuscular mycorrhizal (AM) symbioses, potentially mediating forest responses to environmental change. In this study, we evaluated the cumulative effects of historical environmental change on N concentrations and δ15 N values in AM plants, EM plants, EM fungi, and saprotrophic fungi using herbarium specimens collected in Minnesota, USA from 1871 to 2016. To better understand mycorrhizal mediation of foliar δ15 N, we also analyzed a subset of previously published foliar δ15 N values from across the United States to parse the effects of N deposition and CO2 rise. Over the last century in Minnesota, N concentrations declined among all groups except saprotrophic fungi. δ15 N also declined among all groups of plants and fungi; however, foliar δ15 N declined less in EM plants than in AM plants. In the analysis of previously published foliar δ15 N values, this slope difference between EM and AM plants was better explained by nitrogen deposition than by CO2 rise. Mycorrhizal type did not explain trajectories of plant N concentrations. Instead, plants and EM fungi exhibited similar declines in N concentrations, consistent with declining forest N status despite moderate levels of N deposition.

9.
QJM ; 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38065835

RESUMO

Human African trypanosomiasis (HAT), or sleeping sickness, continues to be a major threat to human health in 36 countries throughout sub-Saharan Africa with up to 60 million people at risk. Over the last decade there have been several advances in this area, some of which are discussed in this overview. Due to the concerted efforts of several bodies, including better identification and treatment of cases and improved tsetse fly vector control, the number of cases of HAT has declined dramatically. The clinical heterogeneity of HAT has also been increasingly recognised and the disease, while usually fatal if untreated or inadequately treated, does not always have a uniformly fatal outcome. Improved methods of HAT diagnosis have now been developed including Rapid Diagnostic Tests (RDTs). Novel drug treatment of HAT has also been developed, notably NECT for late- stage T.b.gambiense, oral fexinidazole for early and the early component of the late-stage of T.b.gambiense, and the new oral compounds of the oxaborole group which have shown considerable promise in field trials. Advances in HAT neuropathogenesis have been steady though largely incremental, with a particular focus on the role of the BBB in parasite entry into the Central Nervous System (CNS), and the relevant importance of both innate and adaptive immunity. While the WHO goal of elimination of HAT as a public health problem by 2020 has probably been achieved, it remains to be seen whether the second more ambitious goal of interruption of transmission of HAT by 2030 will be attained.

10.
Commun Biol ; 6(1): 990, 2023 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-37798331

RESUMO

The invasive hornet Vespa velutina nigrithorax is considered a proliferating threat to pollinators in Europe and Asia. While the impact of this species on managed honey bees is well-documented, effects upon other pollinator populations remain poorly understood. Nonetheless, dietary analyses indicate that the hornets consume a diversity of prey, fuelling concerns for at-risk taxa. Here, we quantify the impact of V. velutina upon standardised commercially-reared colonies of the European bumblebee, Bombus terrestris terrestris. Using a landscape-scale experimental design, we deploy colonies across a gradient of local V. velutina densities, utilising automated tracking to non-invasively observe bee and hornet behaviour, and quantify subsequent effects upon colony outcomes. Our results demonstrate that hornets frequently hunt at B. terrestris colonies, being preferentially attracted to those with high foraging traffic, and engaging in repeated-yet entirely unsuccessful-predation attempts at nest entrances. Notably however, we show that B. terrestris colony weights are negatively associated with local V. velutina densities, indicating potential indirect effects upon colony growth. Taken together, these findings provide the first empirical insight into impacts on bumblebees at the colony level, and inform future mitigation efforts for wild and managed pollinators.


Assuntos
Vespas , Abelhas , Animais , Europa (Continente) , Ásia , Comportamento Predatório
11.
Aust Health Rev ; 47(6): 631-633, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37844625

RESUMO

NSW Health is implementing genomics as a mainstream component of clinical care. The strategic, holistic approach is considering infrastructure, data governance and management, workforce, education, service planning and delivery. This work is generating insights about how to realise the promise of genomics in healthcare, highlighting the need for strong foundations, real-world application, accessibility and a focus on people using genomic information in clinical care.


Assuntos
Atenção à Saúde , Instalações de Saúde , Humanos , Recursos Humanos , Genômica
12.
FEMS Microbiol Ecol ; 99(9)2023 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-37656873

RESUMO

Despite growing interest in fungal necromass decomposition due to its importance in soil carbon retention, whether a consistent group of microorganisms is associated with decomposing necromass remains unresolved. Here, we synthesize knowledge on the composition of the bacterial and fungal communities present on decomposing fungal necromass from a variety of fungal species, geographic locations, habitats, and incubation times. We found that there is a core group of both bacterial and fungal genera (i.e. a core fungal necrobiome), although the specific size of the core depended on definition. Based on a metric that included both microbial frequency and abundance, we demonstrate that the core is taxonomically and functionally diverse, including bacterial copiotrophs and oligotrophs as well as fungal saprotrophs, ectomycorrhizal fungi, and both fungal and animal parasites. We also show that the composition of the core necrobiome is notably dynamic over time, with many core bacterial and fungal genera having specific associations with the early, middle, or late stages of necromass decomposition. While this study establishes the existence of a core fungal necrobiome, we advocate that profiling the composition of fungal necromass decomposer communities in tropical environments and other terrestrial biomes beyond forests is needed to fill key knowledge gaps regarding the global nature of the fungal necrobiome.


Assuntos
Micobioma , Micorrizas , Animais , Carbono , Ecossistema , Florestas
13.
Viruses ; 15(8)2023 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-37632006

RESUMO

Varicella-Zoster virus (VZV) is a pathogenic human alpha herpes virus that causes varicella (chicken pox) as a primary infection and, following a variable period of latency in different ganglionic neurons, it reactivates to produce herpes zoster (shingles). The focus of this review is on the wide spectrum of the possible neurological manifestations of VZV reactivation. While the most frequent reactivation syndrome is herpes zoster, this may be followed by the serious and painful post-herpetic neuralgia (PHN) and by many other neurological conditions. Prominent among these conditions is a VZV vasculopathy, but the role of VZV in causing giant cell arteritis (GCA) is currently controversial. VZV reactivation can also cause segmental motor weakness, myelitis, cranial nerve syndromes, Guillain-Barre syndrome, meningoencephalitis, and zoster sine herpete, where a neurological syndrome occurs in the absence of the zoster rash. The field is complicated by the relatively few cases of neurological complications described and by the issue of causation when a neurological condition is not manifest at the same time as the zoster rash.


Assuntos
Alphavirus , Varicela , Exantema , Herpes Zoster , Neuralgia Pós-Herpética , Humanos , Herpesvirus Humano 3 , Herpes Zoster/complicações
14.
Proc Natl Acad Sci U S A ; 120(34): e2221619120, 2023 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-37579148

RESUMO

The interaction networks formed by ectomycorrhizal fungi (EMF) and their tree hosts, which are important to both forest recruitment and ecosystem carbon and nutrient retention, may be particularly susceptible to climate change at the boreal-temperate forest ecotone where environmental conditions are changing rapidly. Here, we quantified the compositional and functional trait responses of EMF communities and their interaction networks with two boreal (Pinus banksiana and Betula papyrifera) and two temperate (Pinus strobus and Quercus macrocarpa) hosts to a factorial combination of experimentally elevated temperatures and reduced rainfall in a long-term open-air field experiment. The study was conducted at the B4WarmED (Boreal Forest Warming at an Ecotone in Danger) experiment in Minnesota, USA, where infrared lamps and buried heating cables elevate temperatures (ambient, +3.1 °C) and rain-out shelters reduce growing season precipitation (ambient, ~30% reduction). EMF communities were characterized and interaction networks inferred from metabarcoding of fungal-colonized root tips. Warming and rainfall reduction significantly altered EMF community composition, leading to an increase in the relative abundance of EMF with contact-short distance exploration types. These compositional changes, which likely limited the capacity for mycelial connections between trees, corresponded with shifts from highly redundant EMF interaction networks under ambient conditions to less redundant (more specialized) networks. Further, the observed changes in EMF communities and interaction networks were correlated with changes in soil moisture and host photosynthesis. Collectively, these results indicate that the projected changes in climate will likely lead to significant shifts in the traits, structure, and integrity of EMF communities as well as their interaction networks in forest ecosystems at the boreal-temperate ecotone.


Assuntos
Micorrizas , Pinus , Ecossistema , Mudança Climática , Florestas , Árvores/fisiologia , Pinus/microbiologia
15.
mSystems ; 8(4): e0039023, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37338274

RESUMO

Microbial necromass contributes significantly to both soil carbon (C) persistence and ecosystem nitrogen (N) availability, but quantitative estimates of C and N movement from necromass into soils and decomposer communities are lacking. Additionally, while melanin is known to slow fungal necromass decomposition, how it influences microbial C and N acquisition as well as elemental release into soils remains unclear. Here, we tracked decomposition of isotopically labeled low and high melanin fungal necromass and measured 13C and 15N accumulation in surrounding soils and microbial communities over 77 d in a temperate forest in Minnesota, USA. Mass loss was significantly higher from low melanin necromass, corresponding with greater 13C and 15N soil inputs. A taxonomically and functionally diverse array of bacteria and fungi was enriched in 13C and/or 15N at all sampling points, with enrichment being consistently higher on low melanin necromass and earlier in decomposition. Similar patterns of preferential C and N enrichment of many bacterial and fungal genera early in decomposition suggest that both microbial groups co-contribute to the rapid assimilation of resource-rich soil organic matter inputs. While overall richness of taxa enriched in C was higher than in N for both bacteria and fungi, there was a significant positive relationship between C and N in co-enriched taxa. Collectively, our results demonstrate that melanization acts as a key ecological trait mediating not only fungal necromass decomposition rate but also necromass C and N release and that both elements are rapidly co-utilized by diverse bacterial and fungal decomposers in natural settings. IMPORTANCE Recent studies indicate that microbial dead cells, particularly those of fungi, play an important role in long-term carbon persistence in soils. Despite this growing recognition, how the resources within dead fungal cells (also known as fungal necromass) move into decomposer communities and soils are poorly quantified, particularly in studies based in natural environments. In this study, we found that the contribution of fungal necromass to soil carbon and nitrogen availability was slowed by the amount of melanin present in fungal cell walls. Further, despite the overall rapid acquisition of carbon and nitrogen from necromass by a diverse range of both bacteria and fungi, melanization also slowed microbial uptake of both elements. Collectively, our results indicate that melanization acts as a key ecological trait mediating not only fungal necromass decomposition rate, but also necromass carbon and nitrogen release into soil as well as microbial resource acquisition.


Assuntos
Microbiota , Solo , Carbono , Nitrogênio/análise , Melaninas , Fungos , Bactérias
16.
Genetics ; 224(2)2023 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-37070772

RESUMO

Studying the signatures of evolution can help to understand genetic processes. Here, we demonstrate how the existence of balancing selection can be used to identify the breeding systems of fungi from genomic data. The breeding systems of fungi are controlled by self-incompatibility loci that determine mating types between potential mating partners, resulting in strong balancing selection at the loci. Within the fungal phylum Basidiomycota, two such self-incompatibility loci, namely HD MAT locus and P/R MAT locus, control mating types of gametes. Loss of function at one or both MAT loci results in different breeding systems and relaxes the MAT locus from balancing selection. By investigating the signatures of balancing selection at MAT loci, one can infer a species' breeding system without culture-based studies. Nevertheless, the extreme sequence divergence among MAT alleles imposes challenges for retrieving full variants from both alleles when using the conventional read-mapping method. Therefore, we employed a combination of read-mapping and local de novo assembly to construct haplotypes of HD MAT alleles from genomes in suilloid fungi (genera Suillus and Rhizopogon). Genealogy and pairwise divergence of HD MAT alleles showed that the origins of mating types predate the split between these two closely related genera. High sequence divergence, trans-specific polymorphism, and the deeply diverging genealogy confirm the long-term functionality and multiallelic status of HD MAT locus in suilloid fungi. This work highlights a genomics approach to studying breeding systems regardless of the culturability of organisms based on the interplay between evolution and genetics.


Assuntos
Basidiomycota , Evolução Molecular , Melhoramento Vegetal , Basidiomycota/genética , Genômica , Polimorfismo Genético , Genes Fúngicos Tipo Acasalamento/genética , Filogenia , Fungos/genética
17.
Ecol Evol ; 13(3): e9902, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37006889

RESUMO

Automated 3D image-based tracking systems are new and promising devices to investigate the foraging behavior of flying animals with great accuracy and precision. 3D analyses can provide accurate assessments of flight performance in regard to speed, curvature, and hovering. However, there have been few applications of this technology in ecology, particularly for insects. We used this technology to analyze the behavioral interactions between the Western honey bee Apis mellifera and its invasive predator the Asian hornet, Vespa velutina nigrithorax. We investigated whether predation success could be affected by flight speed, flight curvature, and hovering of the Asian hornet and honey bees in front of one beehive. We recorded a total of 603,259 flight trajectories and 5175 predator-prey flight interactions leading to 126 successful predation events, representing 2.4% predation success. Flight speeds of hornets in front of hive entrances were much lower than that of their bee prey; in contrast to hovering capacity, while curvature range overlapped between the two species. There were large differences in speed, curvature, and hovering between the exit and entrance flights of honey bees. Interestingly, we found hornet density affected flight performance of both honey bees and hornets. Higher hornet density led to a decrease in the speed of honey bees leaving the hive, and an increase in the speed of honey bees entering the hive, together with more curved flight trajectories. These effects suggest some predator avoidance behavior by the bees. Higher honey bee flight curvature resulted in lower hornet predation success. Results showed an increase in predation success when hornet number increased up to 8 individuals, above which predation success decreased, likely due to competition among predators. Although based on a single colony, this study reveals interesting outcomes derived from the use of automated 3D tracking to derive accurate measures of individual behavior and behavioral interactions among flying species.

19.
Trends Microbiol ; 31(2): 173-180, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36100506

RESUMO

Dead microbial cells, commonly referred to as necromass, are increasingly recognized as an important source of both persistent carbon as well as nutrient availability in soils. Studies of the microbial communities associated with decomposing fungal necromass have accumulated rapidly in recent years across a range of different terrestrial ecosystems. Here we identify the primary ecological patterns regarding the structure and dynamics of the fungal necrobiome as well as highlight new research frontiers that will likely be key to gaining a full understanding of fungal necrobiome composition and its associated role in soil biogeochemical cycling. Because many members of the fungal necrobiome are culturable, combining laboratory functional assays with field-based surveys and experiments will allow ongoing studies of the fungal necrobiome to move from largely descriptive to increasingly predictive.


Assuntos
Fungos , Microbiota , Fungos/genética , Solo/química , Microbiologia do Solo
20.
Chemosphere ; 311(Pt 1): 136994, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36332737

RESUMO

Past industrial activities have generated many contaminated lands from which Mercury (Hg) escapes, primarily by volatilization. Current phytomanagement techniques aim to limit Hg dispersion by increasing its stabilization in soil. Although soil fungi represent a source of Hg emission associated with biovolatilization mechanisms, there is limited knowledge about how dead fungal residues (i.e., fungal necromass) interact with soil Hg. This study determined the Hg biosorption potential of fungal necromass and the chemical drivers of passive Hg binding with dead mycelia. Fungal necromass was incubated under field conditions with contrasting chemical properties at a well-characterized Hg phytomanagement experimental site in France. After four months of incubation in soil, fungal residues passively accumulated substantial quantities of Hg in their recalcitrant fractions ranging from 400 to 4500 µg Hg/kg. In addition, infrared spectroscopy revealed that lipid compounds explained the amount of Hg biosorption to fungal necromass. Based on these findings, we propose that fungal necromass is likely an important factor in Hg immobilization in soil.


Assuntos
Mercúrio , Poluentes do Solo , Solo/química , Mercúrio/análise , Poluentes do Solo/análise , Microbiologia do Solo , Volatilização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...