Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 1965, 2023 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-36737650

RESUMO

Illicit cattle ranching and coca farming have serious negative consequences on the Colombian Amazon's land systems. The underlying causes of these land activities include historical processes of colonization, armed conflict, and narco-trafficking. We aim to examine how illicit cattle ranching and coca farming are driving forest cover change over the last 34 years (1985-2019). To achieve this aim, we combine two pixel-based approaches to differentiate between coca farming and cattle ranching using hypothetical observed patterns of illicit activities and a deep learning algorithm. We found evidence that cattle ranching, not coca, is the main driver of forest loss outside the legal agricultural frontier. There is evidence of a recent, explosive conversion of forests to cattle ranching outside the agricultural frontier and within protected areas since the negotiation phase of the peace agreement. In contrast, coca is remarkably persistent, suggesting that crop substitution programs have been ineffective at stopping the expansion of coca farming deeper into protected areas. Countering common narratives, we found very little evidence that coca farming precedes cattle ranching. The spatiotemporal dynamics of the expansion of illicit land uses reflect the cumulative outcome of agrarian policies, Colombia's War on Drugs, and the 2016 peace accord. Our study enables the differentiation of illicit land activities, which can be transferred to other regions where these activities have been documented but poorly distinguished spatiotemporally. We provide an applied framework that could be used elsewhere to disentangle other illicit land uses, track their causes, and develop management options for forested land systems and people who depend on them.


Assuntos
Coca , Cocaína , Animais , Bovinos , Colômbia , Agricultura , Fazendas , Conservação dos Recursos Naturais
2.
PLoS One ; 13(12): e0206439, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30566478

RESUMO

Landscape solar energy is a significant environmental driver, yet it remains complicated to model well. Several solar radiation models simplify the complexity of light by estimating it at discrete point locations or by averaging values over larger areas. These modeling approaches may be useful in certain cases, but they are unable to provide spatially distributed and temporally dynamic representations of solar energy across entire landscapes. We created a landscape-scale ground-level shade and solar energy model called Penumbra to address this deficiency. Penumbra simulates spatially distributed ground-level shade and incident solar energy at user-defined timescales by modeling local and distant topographic shading and vegetative shading. Spatially resolved inputs of a digital elevation model, a normalized digital surface model, and landscape object transmittance are used to estimate spatial variations in solar energy at user-defined temporal timesteps. The research goals for Penumbra included: 1) simulations of spatiotemporal variations of shade and solar energy caused by both objects and topographic features, 2) minimal user burden and parameterization, 3) flexible user defined temporal parameters, and 4) flexible external model coupling. We test Penumbra's predictive skill by comparing the model's predictions with monitored open and forested sites, and achieve calibrated mean errors ranging from -17.3 to 148.1 µmoles/m2/s. Penumbra is a dynamic model that can produce spatial and temporal representations of shade percentage and ground-level solar energy. Outputs from Penumbra can be used with other ecological models to better understand the health and resilience of aquatic, near stream terrestrial, and upland ecosystems.


Assuntos
Modelos Teóricos , Energia Solar
3.
Water (Basel) ; 10(10): 1398, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30505572

RESUMO

Modeling the spatial and temporal dynamics of soil temperature is deterministically complex due to the wide variability of several influential environmental variables, including soil column composition, soil moisture, air temperature, and solar energy. Landscape incident solar radiation is a significant environmental driver that affects both air temperature and ground-level soil energy loading; therefore, inclusion of solar energy is important for generating accurate representations of soil temperature. We used the U.S. Environmental Protection Agency's Oregon Crest-to-Coast (O'CCMoN) Environmental Monitoring Transect dataset to develop and test the inclusion of ground-level solar energy driver data within an existing soil temperature model currently utilized within an ecohydrology model called Visualizing Ecosystem Land Management Assessments (VELMA). The O'CCMoN site data elucidate how localized ground-level solar energy between open and forested landscapes greatly influence the resulting soil temperature. We demonstrate how the inclusion of local ground-level solar energy significantly improves the ability to deterministically model soil temperature at two depths. These results suggest that landscape and watershed-scale models should incorporate spatially distributed solar energy to improve spatial and temporal simulations of soil temperature.

4.
Carbon Balance Manag ; 13(1): 15, 2018 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-30218413

RESUMO

BACKGROUND: Satellite-based aboveground forest biomass maps commonly form the basis of forest biomass and carbon stock mapping and monitoring, but biomass maps likely vary in performance by region and as a function of spatial scale of aggregation. Assessing such variability is not possible with spatially-sparse vegetation plot networks. In the current study, our objective was to determine whether high-resolution lidar-based and moderate-resolution Landsat-base aboveground live forest biomass maps converged on similar predictions at stand- to landscape-levels (10 s to 100 s ha) and whether such differences depended on biophysical setting. Specifically, we examined deviations between lidar- and Landsat-based biomass mapping methods across scales and ecoregions using a measure of error (normalized root mean square deviation), a measure of the unsystematic deviations, or noise (Pearson correlation coefficient), and two measures related to systematic deviations, or biases (intercept and slope of a regression between the two sets of predictions). RESULTS: Compared to forest inventory data (0.81-ha aggregate-level), lidar and Landsat-based mean biomass predictions exhibited similar performance, though lidar predictions exhibited less normalized root mean square deviation than Landsat when compared with the reference plot data. Across aggregate-levels, the intercepts and slopes of regression equations describing the relationships between lidar- and Landsat-based biomass predictions stabilized (i.e., little additional change with increasing area of aggregates) at aggregate-levels between 10 and 100 ha, suggesting a consistent relationship between the two maps at landscape-scales. Differences between lidar- and Landsat-based biomass maps varied as a function of forest canopy heterogeneity and composition, with systematic deviations (regression intercepts) increasing with mean canopy cover and hardwood proportion within forests and correlations decreasing with hardwood proportion. CONCLUSIONS: Deviations between lidar- and Landsat-based maps indicated that satellite-based approaches may represent general gradients in forest biomass. Ecoregion impacted deviations between lidar and Landsat biomass maps, highlighting the importance of biophysical setting in determining biomass map performance across aggregate scales. Therefore, regardless of the source of remote sensing (e.g., Landsat vs. lidar), factors affecting the measurement and prediction of forest biomass, such as species composition, need to be taken into account whether one is estimating biomass at the plot, stand, or landscape scale.

5.
Carbon Balance Manag ; 10: 12, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26029249

RESUMO

BACKGROUND: Disturbance is a key influence on forest carbon dynamics, but the complexity of spatial and temporal patterns in forest disturbance makes it difficult to quantify their impacts on carbon flux over broad spatial domains. Here we used a time series of Landsat remote sensing images and a climate-driven carbon cycle process model to evaluate carbon fluxes at the ecoregion scale in western Oregon. RESULTS: Thirteen percent of total forest area in the West Cascades ecoregion was disturbed during the reference interval (1991-2010). The disturbance regime was dominated by harvesting (59 % of all area disturbed), with lower levels of fire (23 %), and pest/pathogen mortality (18 %). Ecoregion total Net Ecosystem Production was positive (a carbon sink) in all years, with greater carbon uptake in relatively cool years. Localized carbon source areas were associated with recent harvests and fire. Net Ecosystem Exchange (including direct fire emissions) showed greater interannual variation and became negative (a source) in the highest fire years. Net Ecosystem Carbon Balance (i.e. change in carbon stocks) was more positive on public that private forestland, because of a lower disturbance rate, and more positive in the decade of the 1990s than in the warmer and drier 2000s because of lower net ecosystem production and higher direct fire emissions in the 2000s. CONCLUSION: Despite recurrent disturbances, the West Cascades ecoregion has maintained a positive carbon balance in recent decades. The high degree of spatial and temporal resolution in these simulations permits improved attribution of regional carbon sources and sinks.

6.
PLoS One ; 10(4): e0124415, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25923327

RESUMO

For widely distributed species at risk, such as Pacific salmon (Oncorhynchus spp.), habitat monitoring is both essential and challenging. Only recently have widespread monitoring programs been implemented for salmon habitat in the Pacific Northwest. Remote sensing data, such as Landsat images, are therefore a useful way to evaluate trends prior to the advent of species-specific habitat monitoring programs. We used annual (1986-2008) land cover maps created from Landsat images via automated algorithms (LandTrendr) to evaluate trends in developed (50-100% impervious) land cover in areas adjacent to five types of habitat utilized by Chinook salmon (O. tshawytscha) in the Puget Sound region of Washington State, U.S.A. For the region as a whole, we found significant increases in developed land cover adjacent to each of the habitat types evaluated (nearshore, estuary, mainstem channel, tributary channel, and floodplain), but the increases were small (<1% total increase from 1986 to 2008). For each habitat type, the increasing trend changed during the time series. In nearshore, mainstem, and floodplain areas, the rate of increase in developed land cover slowed in the latter portion of the time series, while the opposite occurred in estuary and tributary areas. Watersheds that were already highly developed in 1986 tended to have higher rates of development than initially less developed watersheds. Overall, our results suggest that developed land cover in areas adjacent to Puget Sound salmon habitat has increased only slightly since 1986 and that the rate of change has slowed near some key habitat types, although this has occurred within the context of a degraded baseline condition.


Assuntos
Conservação dos Recursos Naturais/métodos , Espécies em Perigo de Extinção , Monitoramento Ambiental/métodos , Salmão/fisiologia , Animais , Ecossistema , Monitoramento Ambiental/instrumentação , Estuários , Humanos , Rios , Imagens de Satélites/estatística & dados numéricos , Washington
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...