Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38746434

RESUMO

Proteins harboring intrinsically disordered regions (IDRs) lacking stable secondary or tertiary structures are abundant across the three domains of life. These regions have not been systematically studied in prokaryotes. Our genome-wide analysis identifies extracytoplasmic serine/threonine-rich IDRs in several biologically important membrane proteins in streptococci. We demonstrate that these IDRs are O -glycosylated with glucose by glycosyltransferases GtrB and PgtC2 in Streptococcus pyogenes and Streptococcus pneumoniae , and with N-acetylgalactosamine by a Pgf-dependent mechanism in Streptococcus mutans . Absence of glycosylation leads to a defect in biofilm formation under ethanol-stressed conditions in S. mutans . We link this phenotype to the C-terminal IDR of a post-translocation secretion chaperone PrsA. O -glycosylation of the IDR protects this region from proteolytic degradation. The IDR length attenuates the efficiency of glycosylation and, consequently, the expression level of PrsA. Taken together, our data reveal that O -glycosylation of IDRs functions as a dynamic switch of protein homeostasis in streptococci.

2.
bioRxiv ; 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38766245

RESUMO

Streptococcus mutans, the causative agent of human dental caries, expresses a cell wall attached Serotype c- specific Carbohydrate (SCC) that is critical for cell viability. SCC consists of a repeating →3)α-Rha(1→2)α-Rha(1→ polyrhamnose backbone, with glucose (Glc) side-chains and glycerol phosphate (GroP) decorations. This study reveals that SCC has one major and two minor Glc modifications. The major Glc modification, α-Glc, attached to position 2 of 3-rhamnose, is installed by SccN and SccM glycosyltransferases and is the site of the GroP addition. The minor Glc modifications are ß-Glc linked to position 4 of 3-rhamnose installed by SccP and SccQ glycosyltransferases, and α-Glc attached to position 4 of 2-rhamnose installed by SccN working in tandem with an unknown enzyme. Both the major and the minor ß-Glc modifications control bacterial morphology, but only the GroP and major Glc modifications are critical for biofilm formation.

3.
Nat Commun ; 13(1): 590, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35105886

RESUMO

The cell wall of the human bacterial pathogen Group A Streptococcus (GAS) consists of peptidoglycan decorated with the Lancefield group A carbohydrate (GAC). GAC is a promising target for the development of GAS vaccines. In this study, employing chemical, compositional, and NMR methods, we show that GAC is attached to peptidoglycan via glucosamine 1-phosphate. This structural feature makes the GAC-peptidoglycan linkage highly sensitive to cleavage by nitrous acid and resistant to mild acid conditions. Using this characteristic of the GAS cell wall, we identify PplD as a protein required for deacetylation of linkage N-acetylglucosamine (GlcNAc). X-ray structural analysis indicates that PplD performs catalysis via a modified acid/base mechanism. Genetic surveys in silico together with functional analysis indicate that PplD homologs deacetylate the polysaccharide linkage in many streptococcal species. We further demonstrate that introduction of positive charges to the cell wall by GlcNAc deacetylation protects GAS against host cationic antimicrobial proteins.


Assuntos
Acetilesterase/metabolismo , Parede Celular/metabolismo , Polissacarídeos Bacterianos/metabolismo , Streptococcus/metabolismo , Acetilglucosamina/metabolismo , Proteínas de Bactérias/metabolismo , Cristalografia por Raios X , Glucosamina/análogos & derivados , Glucofosfatos , Histonas , Humanos , Ácido Nitroso , Peptidoglicano/química , Peptidoglicano/metabolismo , Infecções Estreptocócicas/microbiologia , Streptococcus mutans
4.
Nat Chem Biol ; 17(8): 878-887, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34045745

RESUMO

In ovoid-shaped, Gram-positive bacteria, MapZ guides FtsZ-ring positioning at cell equators. The cell wall of the ovococcus Streptococcus mutans contains peptidoglycan decorated with serotype c carbohydrates (SCCs). In the present study, we identify the major cell separation autolysin AtlA as an SCC-binding protein. AtlA binding to SCC is attenuated by the glycerol phosphate (GroP) modification. Using fluorescently labeled AtlA constructs, we mapped SCC distribution on the streptococcal surface, revealing enrichment of GroP-deficient immature SCCs at the cell poles and equators. The immature SCCs co-localize with MapZ at the equatorial rings throughout the cell cycle. In GroP-deficient mutants, AtlA is mislocalized, resulting in dysregulated cellular autolysis. These mutants display morphological abnormalities associated with MapZ mislocalization, leading to FtsZ-ring misplacement. Altogether, our data support a model in which maturation of a cell wall polysaccharide provides the molecular cues for the recruitment of cell division machinery, ensuring proper daughter cell separation and FtsZ-ring positioning.


Assuntos
Parede Celular/metabolismo , Polissacarídeos/metabolismo , Streptococcus mutans/metabolismo , Divisão Celular , Parede Celular/química , Polissacarídeos/química , Streptococcus mutans/citologia
5.
Sci Rep ; 9(1): 20267, 2019 12 30.
Artigo em Inglês | MEDLINE | ID: mdl-31889085

RESUMO

Mycobacterium tuberculosis is the cause of the world's most deadly infectious disease. Efforts are underway to target the methionine biosynthesis pathway, as it is not part of the host metabolism. The homoserine transacetylase MetX converts L-homoserine to O-acetyl-L-homoserine at the committed step of this pathway. In order to facilitate structure-based drug design, we determined the high-resolution crystal structures of three MetX proteins, including M. tuberculosis (MtMetX), Mycolicibacterium abscessus (MaMetX), and Mycolicibacterium hassiacum (MhMetX). A comparison of homoserine transacetylases from other bacterial and fungal species reveals a high degree of structural conservation amongst the enzymes. Utilizing homologous structures with bound cofactors, we analyzed the potential ligandability of MetX. The deep active-site tunnel surrounding the catalytic serine yielded many consensus clusters during mapping, suggesting that MtMetX is highly druggable.


Assuntos
Acetiltransferases/química , Acetiltransferases/metabolismo , Domínio Catalítico , Metionina/biossíntese , Modelos Moleculares , Mycobacterium/enzimologia , Sequência de Aminoácidos , Antibacterianos/química , Antibacterianos/farmacologia , Sítios de Ligação , Cristalografia por Raios X , Descoberta de Drogas , Redes e Vias Metabólicas/efeitos dos fármacos , Conformação Molecular , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Ligação Proteica , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...