Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Photochem Photobiol Sci ; 14(2): 288-99, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25380177

RESUMO

LOV domains are the light sensitive parts of phototropins and many other light-activated enzymes that regulate the response to blue light in plants and algae as well as some fungi and bacteria. Unlike all other biological photoreceptors known so far, the photocycle of LOV domains involves the excited triplet state of the chromophore. This chromophore is flavin mononucleotide (FMN) which forms a covalent adduct with a cysteine residue in the signaling state. Since the formation of this adduct from the triplet state involves breaking and forming of two bonds as well as a change from the triplet to the singlet spin state, various intermediates have been proposed, e.g. a protonated triplet state (3)FMNH(+), the radical anion (2)FMN˙(-), or the neutral semiquinone radical (2)FMNH˙. We performed an extensive search for these intermediates by two-dimensional transient absorption (2D-TA) with a streak camera. However, no transient with a rate constant between the decay of fluorescence and the decay of the triplet state could be detected. Analysis of the decay associated difference spectra results in quantum yields for the formation of the adduct from the triplet of ΦA(LOV1) ≈ 0.75 and ΦA(LOV2) ≈ 0.80. This is lower than the values ΦA(LOV1) ≈ 0.95 and ΦA(LOV2) ≈ 0.99 calculated from the rate constants, giving indirect evidence of an intermediate that reacts either to form the adduct or to decay back to the ground state. Since there is no measurable delay between the decay of the triplet and the formation of the adduct, we conclude that this intermediate reacts much faster than it is formed. The LOV1-C57S mutant shows a weak and slowly decaying (τ > 100 µs) transient whose decay associated spectrum has bands at 375 and 500 nm, with a shoulder at 400 nm. This transient is insensitive to the pH change in the range 6.5-10.0 but increases on addition of ß-mercaptoethanol as the reducing agent. We assign this intermediate to the radical anion which is protected from protonation by the protein. We propose that the adduct is formed via the same intermediate by combination of the radical ion pair.


Assuntos
Chlamydomonas reinhardtii/química , Fotorreceptores de Plantas/química , Proteínas de Plantas/química , Ânions/química , Escherichia coli , Concentração de Íons de Hidrogênio , Cinética , Mercaptoetanol/química , Mutação , Fotodegradação , Proteínas de Plantas/genética , Estrutura Terciária de Proteína , Substâncias Redutoras/química , Análise Espectral
2.
Phys Chem Chem Phys ; 14(19): 7076-89, 2012 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-22491099

RESUMO

Excitation of tert-butylnitrite into the first and second UV absorption bands leads to efficient dissociation into the fragment radicals NO and tert-butoxy in their electronic ground states (2)Π and (2)E, respectively. Velocity distributions and angular anisotropies for the NO fragment in several hundred rotational and vibrational quantum states were obtained by velocity-map imaging and the recently developed 3D-REMPI method. Excitation into the well resolved vibronic progression bands (k = 0, 1, 2) of the NO stretch mode in the S1← S0 transition produces NO fragments mostly in the vibrational state with v = k, with smaller fractions in v = k- 1 and v = k- 2. It is concluded that dissociation occurs on the purely repulsive PES of S1 without barrier. All velocity distributions from photolysis via the S1(nπ*) state are monomodal and show high negative anisotropy (ß≈-1). The rotational distributions peak near j = 30.5 irrespective of the vibronic state S1(k) excited and the vibrational state v of the NO fragment. On average 46% of the excess energy is converted to kinetic energy, 23% and 31% remain as internal energy in the NO fragment and the t-BuO radical, respectively. Photolysis via excitation into the S2← S0 transition at 227 nm yields NO fragments with about equal populations in v = 0 and v = 1. The rotational distributions have a single maximum near j = 59.5. The velocity distributions are monomodal with positive anisotropy ß≈ 0.8. The average fractions of the excess energy distributed into translation, internal energy of NO, and internal energy of t-BuO are 39%, 23%, and 38%, respectively. In all cases ∼8500 cm(-1) of energy remain in the internal degrees of freedom of the t-BuO fragment. This is mostly assigned to rotational energy. An ab initio calculation of the dynamic reaction path shows that not only the NO fragment but also the t-BuO fragment gain large angular momentum during dissociation on the purely repulsive potential energy surface of S2.

3.
Chemphyschem ; 12(10): 1969-80, 2011 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-21438110

RESUMO

We present the fluorescence excitation and dispersed emission spectra of the parent compound of the boron dipyrromethene (BODIPY) dye class measured in a supersonic beam and isolated in superfluid helium nanodroplets. The gas-phase spectrum of the isolated molecules displays many low-frequency transitions that are assigned to a symmetry-breaking mode with a strongly nonharmonic potential, presumably the out-of-plane wagging mode of the BF(2) group. The data are in good agreement with transition energies and Franck-Condon factors calculated for a double minimum potential in the upper electronic state. The corresponding transitions do not appear in the helium droplet. This is explained with the quasi-rigid first layer of helium atoms attached to the dopant molecule by van der Waals forces. The spectral characteristics are those of a cyanine dye rather than that of an aromatic chromophore.

4.
J Phys Chem A ; 114(36): 9948-62, 2010 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-20825245

RESUMO

S-Nitrosothiols serve as carriers and donors of NO in several important biological signaling systems. In these compounds the S-NO bond is rather labile and NO can be released thermally or photochemically. This paper reports on the photolytical decomposition of tert-butylthionitrite (t-BuSNO) in the visible and near-UV spectral regions. Between 500 and 605 nm several vibronic levels of the S(1) (npi*) state were excited, including the electronic origin. At 360 nm t-BuSNO is excited near the maximum of the first UV band assigned to the S(2) (pipi*) state. The velocity distributions of several hundred rovibrational states of the NO fragments were recorded with the recently developed 3d-REMPI method. A global fit to these data yields populations of the rovibrational states in both spin-orbit components of the (2)Pi electronic state of NO as well as their velocity distributions and angular anisotropies beta. These data also carry the distribution functions for internal and kinetic energy of the counterfragment, the t-BuS radical. The range found for the anisotropy parameter confirms the npi* character of the visible absorption band (-1.0 < beta < -0.8), and the pipi* character of the UV band (beta = 1.2). Mode-specific dissociation has been observed for excitation into several vibronic bands of the S(0) → S(1) transition. Some produce NO exclusively in the ν = 0 vibrational ground state, whereas some others produce NO almost entirely in the ν = 1 vibrationally excited state. It is concluded that photodissociation is faster than relaxation of the NO stretch vibration of t-BuSNO in S(1) and that it proceeds on purely repulse potential energy surfaces in both electronic states.

5.
Phys Chem Chem Phys ; 12(18): 4644-55, 2010 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-20428544

RESUMO

The photodissociation reaction of N-nitrosopyrrolidine isolated and cooled in a supersonic jet has been studied following excitation to the S(1) and S(2) electronic states. The nascent NO (X[combining tilde] (2)Pi((1/2),3/2), v, j) radicals were ionized by state-selective (1 + 1)-REMPI via the A(2)Sigma(+) state. The angularly resolved velocity distribution of these ions was measured with the velocity-map imaging (VMI) technique. Photodissociation from S(1) produces NO in the vibrational ground state and the pyrrolidine radical in the electronic ground state 1 (2)B. About 73% of the excess energy is converted into kinetic energy of the fragments. The velocity distribution shows a strong negative anisotropy (beta = -0.9) in accordance with the npi*-character of the S(0)--> S(1) transition. An upper limit for the N-NO dissociation energy of (14 640 +/- 340) cm(-1) is determined. We conclude that photodissociation from S(1) occurs very fast on a completely repulsive potential energy surface. Excitation into the S(2)pipi*-state leads to a bimodal velocity distribution. Two dissociation channels can be distinguished which show both positive anisotropy (beta = 1.3 and 1.6) but differ considerably in the total kinetic energy and the rotational energy of the NO fragment. We assign one channel to the direct dissociation on the S(2) potential energy surface, leading to pyrrolidine radicals in the excited electronic state 1 (2)A. The second channel leads to pyrrolidine in the electronic ground state 1 (2)B, presumably after crossing to the S(1) state via a conical intersection.


Assuntos
N-Nitrosopirrolidina/química , Processos Fotoquímicos , Absorção , Gases/química , Teoria Quântica
6.
Phys Chem Chem Phys ; 11(33): 7115-9, 2009 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-19672518

RESUMO

A new data acquisition mode has been implemented to a velocity-map ion-imaging setup, which records the velocity distributions of molecular photofragments with vibrational and rotational resolution. Compared to conventional velocity-map ion-imaging, the acquired data are of remarkable brilliance. This allows for unambiguous assignment of the fragment quantum states and the analysis of all rotational bands apparent in the electronic transition of the molecular fragment. The acquisition time is the same as required for recording a REMPI spectrum of the photofragments. The method is illustrated by the measurement of the rotational state distribution of NO created in the photolytical decomposition of NO(2) at 225 nm. Different rotational distributions were observed for each vibrational state and for each of the four energetically accessible electronic channels.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...