Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Vet Med Assoc ; 262(4): 489-497, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38324994

RESUMO

OBJECTIVE: To analyze the content of unlicensed GS-441524-like products being used as a largely successful at-home treatment for cats suspected to have FIP. The remdesivir content and pH were also measured. SAMPLE: 127 injectable and oral samples from 30 of the most popular brands of black market producers. METHODS: Unlicensed GS-441524-like products were procured through donations and tested for GS-441524 and remdesivir content by liquid chromatography with tandem mass spectrometry. A pH meter measured the pH of injectable samples. RESULTS: Of the 87 injectable formulations, 95% contained more (on average 39% more) GS-441524 than expected based on the producer's marketed concentrations. The average pH (1.30 pH) was well below the physiologic pH conditions recommended for SC injections. The oral formulations were more variable, with 43% containing more GS-441524 (on average 75% more) than expected and 58% containing less (on average 39% less) than the expected content. There was minimal variability in GS-441524 content between replicate samples in the injectables formulations (measured by coefficient of variation). One injectable and 2 oral samples additionally contained remdesivir. CLINICAL RELEVANCE: All unlicensed products used for the at-home treatment of FIP that we tested contain GS-441524. The injectables generally contain significantly more drug than advertised at a below-physiologic pH. Unlicensed oral products vary more widely in drug content and suffer from unconventional dosing and labeling. These data should highlight the need for regulation of these products and the development of legal pathways to procure GS-441524.


Assuntos
Adenosina/análogos & derivados , Doenças do Gato , Peritonite Infecciosa Felina , Gatos , Animais , Adenosina/uso terapêutico , Antivirais/uso terapêutico , Doenças do Gato/tratamento farmacológico
2.
JACC Basic Transl Sci ; 3(6): 782-795, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30623138

RESUMO

Cellular plasticity is fundamental in biology and disease. Vascular smooth muscle cell (SMC) dedifferentiation (loss of contractile proteins) initiates and perpetrates vascular pathologies such as restenosis. Contractile gene expression is governed by the master transcription factor, serum response factor (SRF). Unlike other histone deacetylases, histone deacetylase 6 (HDAC6) primarily resides in the cytosol. Whether HDAC6 regulates SRF nuclear activity was previously unknown in any cell type. This study found that selective inhibition of HDAC6 with tubastatin A preserved the contractile protein (alpha-smooth muscle actin) that was otherwise diminished by platelet-derived growth factor-BB. Tubastatin A also enhanced SRF transcriptional (luciferase) activity, and this effect was confirmed by HDAC6 knockdown. Interestingly, HDAC6 inhibition increased acetylation and total protein of myocardin-related transcription factor A (MRTF-A), a transcription co-activator known to translocate from the cytosol to the nucleus, thereby activating SRF. Consistently, HDAC6 co-immunoprecipitated with MRTF-A. In vivo studies showed that tubastatin A treatment of injured rat carotid arteries mitigated neointimal lesion, which is known to be formed largely by dedifferentiated SMCs. This report is the first to show HDAC6 regulation of the MRTF-A/SRF axis and SMC plasticity, thus opening a new perspective for interventions of vascular pathologies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...